
1

Introduction: Dimensional
Analysis—Basic Thermodynamics
and Fluid Mechanics

1.1 INTRODUCTION TO TURBOMACHINERY

A turbomachine is a device inwhich energy transfer occurs between a flowing fluid

and a rotating element due to dynamic action, and results in a change in pressure

andmomentum of the fluid.Mechanical energy transfer occurs inside or outside of

the turbomachine, usually in a steady-flow process. Turbomachines include all

those machines that produce power, such as turbines, as well as those types that

produce a head or pressure, such as centrifugal pumps and compressors. The

turbomachine extracts energy from or imparts energy to a continuously moving

stream of fluid. However in a positive displacement machine, it is intermittent.

The turbomachine as described above covers a wide range of machines,

such as gas turbines, steam turbines, centrifugal pumps, centrifugal and axial flow

compressors, windmills, water wheels, and hydraulic turbines. In this text, we

shall deal with incompressible and compressible fluid flow machines.

1.2 TYPES OF TURBOMACHINES

There are different types of turbomachines. They can be classified as:

1. Turbomachines in which (i) work is done by the fluid and (ii) work is

done on the fluid.
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Figure 1.1 Types and shapes of turbomachines.
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2. Turbomachines in which fluid moves through the rotating member in

axial direction with no radial movement of the streamlines. Such

machines are called axial flow machines whereas if the flow is

essentially radial, it is called a radial flow or centrifugal flow machine.

Some of these machines are shown in Fig. 1.1, and photographs of

actual machines are shown in Figs. 1.2–1.6. Two primary points will

be observed: first, that the main element is a rotor or runner carrying

blades or vanes; and secondly, that the path of the fluid in the rotor may

be substantially axial, substantially radial, or in some cases a

combination of both. Turbomachines can further be classified as

follows:

Turbines: Machines that produce power by expansion of a

continuously flowing fluid to a lower pressure or head.

Pumps: Machines that increase the pressure or head of flowing

fluid.

Fans: Machines that impart only a small pressure-rise to a

continuously flowing gas; usually the gas may be considered

to be incompressible.

Figure 1.2 Radial flow fan rotor. (Courtesy of the Buffalo Forge Corp.)

Basic Thermodynamics and Fluid Mechanics 3

Copyright 2003 by Marcel Dekker, Inc. All Rights Reserved



Figure 1.3 Centrifugal compressor rotor (the large double-sided impellar on the right is

the main compressor and the small single-sided impellar is an auxiliary for cooling

purposes). (Courtesy of Rolls-Royce, Ltd.)

Figure 1.4 Centrifugal pump rotor (open type impeller). (Courtesy of the Ingersoll-

Rand Co.)
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Figure 1.5 Multi-stage axial flow compressor rotor. (Courtesy of the Westinghouse

Electric Corp.)

Figure 1.6 Axial flow pump rotor. (Courtesy of the Worthington Corp.)
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Compressors: Machines that impart kinetic energy to a gas

by compressing it and then allowing it to rapidly expand.

Compressors can be axial flow, centrifugal, or a combination

of both types, in order to produce the highly compressed air. In

a dynamic compressor, this is achieved by imparting kinetic

energy to the air in the impeller and then this kinetic energy is

converted into pressure energy in the diffuser.

1.3 DIMENSIONAL ANALYSIS

To study the performance characteristics of turbomachines, a large number of

variables are involved. The use of dimensional analysis reduces the variables to a

number of manageable dimensional groups. Usually, the properties of interest in

regard to turbomachine are the power output, the efficiency, and the head. The

performance of turbomachines depends on one or more of several variables.

A summary of the physical properties and dimensions is given in Table 1.1 for

reference.

Dimensional analysis applied to turbomachines has two more important

uses: (1) prediction of a prototype’s performance from tests conducted on a scale

Table 1.1 Physical Properties and

Dimensions

Property Dimension

Surface L2

Volume L3

Density M/L3

Velocity L/T

Acceleration L/T2

Momentum ML/T

Force ML/T2

Energy and work ML2/T2

Power ML2/T3

Moment of inertia ML2

Angular velocity I/T

Angular acceleration I/T2

Angular momentum ML2/T

Torque ML2/T2

Modules of elasticity M/LT2

Surface tension M/T2

Viscosity (absolute) M/LT

Viscosity (kinematic) L2/T
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model (similitude), and (2) determination of the most suitable type of machine,

on the basis of maximum efficiency, for a specified range of head, speed, and flow

rate. It is assumed here that the student has acquired the basic techniques of

forming nondimensional groups.

1.4 DIMENSIONS AND EQUATIONS

The variables involved in engineering are expressed in terms of a limited number

of basic dimensions. For most engineering problems, the basic dimensions are:

1. SI system: mass, length, temperature and time.

2. English system: mass, length, temperature, time and force.

The dimensions of pressure can be designated as follows

P ¼ F

L2
ð1:1Þ

Equation (1.1) reads as follows: “The dimension of P equals force per

length squared.” In this case, L 2 represents the dimensional characteristics of

area. The left hand side of Eq. (1.1) must have the same dimensions as the right

hand side.

1.5 THE BUCKINGHAM P THEOREM

In 1915, Buckingham showed that the number of independent dimensionless

group of variables (dimensionless parameters) needed to correlate the unknown

variables in a given process is equal to n 2 m, where n is the number of variables

involved and m is the number of dimensionless parameters included in the

variables. Suppose, for example, the drag force F of a flowing fluid past a sphere

is known to be a function of the velocity (v) mass density (r) viscosity (m) and
diameter (D). Then we have five variables (F, v, r, m, and D) and three basic

dimensions (L, F, and T ) involved. Then, there are 5 2 3 ¼ 2 basic grouping of

variables that can be used to correlate experimental results.

1.6 HYDRAULIC MACHINES

Consider a control volume around the pump through which an incompressible

fluid of density r flows at a volume flow rate of Q.

Since the flow enters at one point and leaves at another point the volume

flow rate Q can be independently adjusted by means of a throttle valve. The

discharge Q of a pump is given by

Q ¼ f ðN;D; g;H;m; rÞ ð1:2Þ
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where H is the head, D is the diameter of impeller, g is the acceleration due to

gravity, r is the density of fluid, N is the revolution, and m is the viscosity of fluid.

In Eq. (1.2), primary dimensions are only four. Taking N, D, and r as

repeating variables, we get

P1 ¼ ðNÞaðDÞb r
� �cðQÞ

M0L0T0 ¼ ðT21ÞaðLÞbðML23ÞcðL3T21Þ
For dimensional homogeneity, equating the powers of M, L, and T on both sides

of the equation: for M, 0 ¼ c or c ¼ 0; for T, 0 ¼ 2 a21 or a ¼ 21; for L,

0 ¼ b 2 3c þ 3 or b ¼ 23.

Therefore,

P1 ¼ N21D23r0Q ¼ Q

ND3
ð1:3Þ

Similarly,

P2 ¼ ðNÞdðDÞe r
� �fðgÞ

M0L0T0 ¼ ðT21ÞdðLÞeðML23ÞfðLT22Þ
Now, equating the exponents: for M, 0 ¼ f or f ¼ 0; for T, 0 ¼ 2 d 2 2

or d ¼ 22; for L, 0 ¼ e 2 3f þ 1 or e ¼ 21.

Thus,

P2 ¼ N22D21r0g ¼ g

N 2D
ð1:4Þ

Similarly,

P3 ¼ ðNÞgðDÞh r
� �iðHÞ

M0L0T0 ¼ ðT21ÞgðLÞhðML23ÞiðLÞ
Equating the exponents: for M, 0 ¼ i or i ¼ 0; for T, 0 ¼ 2g or g ¼ 0; for L,

0 ¼ h 2 3i þ 1 or h ¼ 21.

Thus,

P3 ¼ N 0D21r0H ¼ H

D
ð1:5Þ

and,

P4 ¼ ðNÞjðDÞk r
� �lðmÞ

M0L0T0 ¼ ðT21Þ jðLÞkðML23ÞlðML21T21Þ
Equating the exponents: for M, 0 ¼ l þ 1 or l ¼ 21; for T, 0 ¼ 2 j 2 1 or

j ¼ 21; for L, 0 ¼ k-3l 2 1 or k ¼ 22.
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Thus,

P4 ¼ N21D22r21m ¼ m

ND 2r
ð1:6Þ

The functional relationship may be written as

f
Q

ND3
;

g

N 2D
;
H

D
;

m

ND2r

� �
¼ 0

Since the product of twoP terms is dimensionless, therefore replace the termsP2

and P3 by gh/N 2D 2

f
Q

ND3
;

gH

N 2D2
;

m

ND 2r

� �
¼ 0

or

Q ¼ ND 3f
gH

N 2D2
;

m

ND 2r

� �
¼ 0 ð1:7Þ

A dimensionless term of extremely great importance that may be obtained by

manipulating the discharge and head coefficients is the specific speed, defined by

the equation

Ns ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Flow coefficient

Head coefficient

r

¼ N
ffiffiffiffi
Q

p �
gH
� �3/4 ð1:8Þ

The following few dimensionless terms are useful in the analysis of

incompressible fluid flow machines:

1. The flow coefficient and speed ratio: The term Q/(ND 3) is called the

flow coefficient or specific capacity and indicates the volume flow rate

of fluid through a turbomachine of unit diameter runner, operating at

unit speed. It is constant for similar rotors.

2. The head coefficient: The term gH/N 2D 2 is called the specific head.

It is the kinetic energy of the fluid spouting under the head H divided by

the kinetic energy of the fluid running at the rotor tangential speed. It is

constant for similar impellers.

c ¼ H/ U 2/g
� � ¼ gH/ p 2N 2D 2

� � ð1:9Þ
3. Power coefficient or specific power: The dimensionless quantity

P/(rN 2D 2) is called the power coefficient or the specific power. It

shows the relation between power, fluid density, speed and wheel

diameter.

4. Specific speed: The most important parameter of incompressible fluid

flow machinery is specific speed. It is the non-dimensional term. All

turbomachineries operating under the same conditions of flow and head
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having the same specific speed, irrespective of the actual physical size

of the machines. Specific speed can be expressed in this form

Ns ¼ N
ffiffiffiffi
Q

p
/ðgHÞ3/4 ¼ N

ffiffiffi
P

p
/ b r1/2 gH

� �5/4c ð1:10Þ
The specific speed parameter expressing the variation of all the variables N,

Q and H or N,P and H, which cause similar flows in turbomachines that are

geometrically similar. The specific speed represented by Eq. (1.10) is a

nondimensional quantity. It can also be expressed in alternate forms.

These are

Ns ¼ N
ffiffiffiffi
Q

p
/H 3/4 ð1:11Þ

and

Ns ¼ N
ffiffiffi
P

p
/H 5/4 ð1:12Þ

Equation (1.11) is used for specifying the specific speeds of pumps and Eq. (1.12)

is used for the specific speeds of turbines. The turbine specific speed may be

defined as the speed of a geometrically similar turbine, which develops 1 hp

under a head of 1 meter of water. It is clear that Ns is a dimensional quantity. In

metric units, it varies between 4 (for very high head Pelton wheel) and 1000 (for

the low-head propeller on Kaplan turbines).

1.7 THE REYNOLDS NUMBER

Reynolds number is represented by

Re ¼ D2N/n

where y is the kinematic viscosity of the fluid. Since the quantity D 2N is

proportional to DV for similar machines that have the same speed ratio. In flow

through turbomachines, however, the dimensionless parameter D 2N/n is not as

important since the viscous resistance alone does not determine the machine

losses. Various other losses such as those due to shock at entry, impact,

turbulence, and leakage affect the machine characteristics along with various

friction losses.

Consider a control volume around a hydraulic turbine through which an

incompressible fluid of density r flows at a volume flow rate of Q, which is

controlled by a valve. The head difference across the control volume is H, and if

the control volume represents a turbine of diameter D, the turbine develops

a shaft power P at a speed of rotation N. The functional equation may be

written as

P ¼ f ðr;N;m;D;Q; gHÞ ð1:13Þ
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Equation (1.13) may be written as the product of all the variables raised to a

power and a constant, such that

P ¼ const: raN bm cDdQe gH
� �f� �

ð1:14Þ
Substituting the respective dimensions in the above Eq. (1.14),

ML2/T3
� � ¼ const:ðM/L3Það1/TÞbðM/LTÞcðLÞdðL3/TÞeðL2/T2Þ f ð1:15Þ

Equating the powers of M, L, and T on both sides of the equation: for M, 1¼
a þ c; for L, 2 ¼ 23a 2 c þ d þ3e þ2f; for T, 23 ¼ 2b 2 c 2 e 2 2f.

There are six variables and only three equations. It is therefore necessary to

solve for three of the indices in terms of the remaining three. Solving for a, b, and

d in terms of c, e, and f we have:

a ¼ 12 c

b ¼ 32 c2 e2 2f

d ¼ 52 2c2 3e2 2f

Substituting the values of a, b, and d in Eq. (1.13), and collecting like indices into

separate brackets,

P ¼ const: rN 3D 5
� �

;
m

rND 2

� �c

;
Q

ND3

� �e

;
gH

N 2D2

� �f
" #

ð1:16Þ

In Eq. (1.16), the second term in the brackets is the inverse of the Reynolds

number. Since the value of c is unknown, this term can be inverted and Eq. (1.16)

may be written as

P/rN 3D 5 ¼ const:
rND 2

m

� �c

;
Q

ND 3

� �e

;
gH

N 2D2

� �f
" #

ð1:17Þ

In Eq. (1.17) each group of variables is dimensionless and all are used in

hydraulic turbomachinery practice, and are known by the following names: the

power coefficient P/rN 3D5 ¼ P
� �

; the flow coefficient
�
Q/ND 3 ¼ f

�
; and the

head coefficient gH/N 2D2 ¼ c
� �

.

Eqution (1.17) can be expressed in the following form:

P ¼ f Re;f;c
� � ð1:18Þ

Equation (1.18) indicates that the power coefficient of a hydraulic machine is a

function of Reynolds number, flow coefficient and head coefficient. In flow

through hydraulic turbomachinery, Reynolds number is usually very high.

Therefore the viscous action of the fluid has very little effect on the power output

of the machine and the power coefficient remains only a function of f and c.
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Typical dimensionless characteristic curves for a hydraulic turbine and pump are

shown in Fig. 1.7 (a) and (b), respectively. These characteristic curves are also

the curves of any other combination of P, N, Q, and H for a given machine or for

any other geometrically similar machine.

1.8 MODEL TESTING

Some very large hydraulic machines are tested in a model form before making the

full-sized machine. After the result is obtained from the model, one may

transpose the results from the model to the full-sized machine. Therefore if the

curves shown in Fig 1.7 have been obtained for a completely similar model, these

same curves would apply to the full-sized prototype machine.

1.9 GEOMETRIC SIMILARITY

For geometric similarity to exist between the model and prototype, both of them

should be identical in shape but differ only in size. Or, in other words, for

geometric similarity between the model and the prototype, the ratios of all the

corresponding linear dimensions should be equal.

Let Lp be the length of the prototype, Bp, the breadth of the prototype, Dp,

the depth of the prototype, and Lm, Bm, and Dm the corresponding dimensions of

Figure 1.7 Performance characteristics of hydraulic machines: (a) hydraulic turbine,

(b) hydraulic pump.
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the model. For geometric similarity, linear ratio (or scale ratio) is given by

Lr ¼ Lp

Lm
¼ Bp

Bm

¼ Dp

Dm

ð1:19Þ
Similarly, the area ratio between prototype and model is given by

Ar ¼ Lp

Lm

� �2

¼ Bp

Bm

� �2

¼ Dp

Dm

� �2

ð1:20Þ

and the volume ratio

V r ¼ Lp

Lm

� �3

¼ Bp

Bm

� �3

¼ Dp

Dm

� �3

ð1:21Þ

1.10 KINEMATIC SIMILARITY

For kinematic similarity, both model and prototype have identical motions or

velocities. If the ratio of the corresponding points is equal, then the velocity ratio

of the prototype to the model is

V r ¼ V1

v1
¼ V2

v2
ð1:22Þ

where V1 is the velocity of liquid in the prototype at point 1, V2, the velocity of

liquid in the prototype at point 2, v1, the velocity of liquid in the model at point 1,

and v2 is the velocity of liquid in the model at point 2.

1.11 DYNAMIC SIMILARITY

If model and prototype have identical forces acting on them, then dynamic

similarity will exist. Let F1 be the forces acting on the prototype at point 1, and F2
be the forces acting on the prototype at point 2. Then the force ratio to establish

dynamic similarity between the prototype and the model is given by

Fr ¼ Fp1

Fm1

¼ Fp2

Fm2

ð1:23Þ

1.12 PROTOTYPE AND MODEL EFFICIENCY

Let us suppose that the similarity laws are satisfied, hp and hm are the prototype

and model efficiencies, respectively. Now from similarity laws, representing

the model and prototype by subscripts m and p respectively,

Hp

NpDp

� �2 ¼
Hm

NmDmð Þ2 or
Hp

Hm

¼ Np

Nm

� �2
Dp

Dm

� �2
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Qp

NpD3
p

¼ Qm

NmD3
m

or
Qp

Qm

¼ Np

Nm

� �
Dp

Dm

� �3

Pp

N 3
pD

5
p

¼ Pm

N 3
mD

5
m

or
Pp

Pm

¼ Np

Nm

� �3
Dp

Dm

� �5

Turbine efficiency is given by

h t ¼ Power transferred from fluid

Fluid power available:
¼ P

rgQH

Hence;
h m

h p

¼ Pm

Pp

� �
Qp

Qm

� �
Hp

Hm

� �
¼ 1:

Thus, the efficiencies of the model and prototype are the same providing the

similarity laws are satisfied.

1.13 PROPERTIES INVOLVING THE MASS OR
WEIGHT OF THE FLUID

1.13.1 Specific Weight (g)

The weight per unit volume is defined as specific weight and it is given the

symbol g (gamma). For the purpose of all calculations relating to hydraulics, fluid

machines, the specific weight of water is taken as 1000 l/m3. In S.I. units, the

specific weight of water is taken as 9.80 kN/m3.

1.13.2 Mass Density (r)

The mass per unit volume is mass density. In S.I. systems, the units are kilograms

per cubic meter or NS2/m4. Mass density, often simply called density, is given the

greek symbol r (rho). The mass density of water at 15.58 is 1000 kg/m3.

1.13.3 Specific Gravity (sp.gr.)

The ratio of the specific weight of a given liquid to the specific weight of water at

a standard reference temperature is defined as specific gravity. The standard

reference temperature for water is often taken as 48C Because specific gravity is a

ratio of specific weights, it is dimensionless and, of course, independent of system

of units used.

1.13.4 Viscosity (m)

We define viscosity as the property of a fluid, which offers resistance to the

relative motion of fluid molecules. The energy loss due to friction in a flowing
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fluid is due to the viscosity. When a fluid moves, a shearing stress develops in it.

The magnitude of the shearing stress depends on the viscosity of the fluid.

Shearing stress, denoted by the symbol t (tau) can be defined as the force required
to slide on unit area layers of a substance over another. Thus t is a force divided
by an area and can be measured in units N/m2 or Pa. In a fluid such as water, oil,

alcohol, or other common liquids, we find that the magnitude of the shearing

stress is directly proportional to the change of velocity between different

positions in the fluid. This fact can be stated mathematically as

t ¼ m
Dv

Dy

� �
ð1:24Þ

where Dv
Dy is the velocity gradient and the constant of proportionality m is called

the dynamic viscosity of fluid.

Units for Dynamic Viscosity

Solving for m gives

m ¼ t

Dv/Dy
¼ t

Dy

Dv

� �

Substituting the units only into this equation gives

m ¼ N

m2
£ m

m/s
¼ N £ s

m2

Since Pa is a shorter symbol representing N/m2, we can also express m as

m ¼ Pa · s

1.13.5 Kinematic Viscosity (n)

The ratio of the dynamic viscosity to the density of the fluid is called the

kinematic viscosity y (nu). It is defined as

n ¼ m

r
¼ mð1/rÞ ¼ kg

ms
£m3

kg
¼ m2

s
ð1:25Þ

Any fluid that behaves in accordance with Eq. (1.25) is called a Newtonian fluid.

1.14 COMPRESSIBLE FLOW MACHINES

Compressible fluids are working substances in gas turbines, centrifugal and axial

flow compressors. To include the compressibility of these types of fluids (gases),

some new variables must be added to those already discussed in the case of

hydraulic machines and changes must be made in some of the definitions used.

The important parameters in compressible flow machines are pressure and

temperature.
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In Fig. 1.8 T-s charts for compression and expansion processes are shown.

Isentropic compression and expansion processes are represented by s and

the subscript 0 refers to stagnation or total conditions. 1 and 2 refer to the inlet

and outlet states of the gas, respectively. The pressure at the outlet, P02, can be

expressed as follows

P02 ¼ f D;N;m;P01; T01; T02; r01; r02;m
� � ð1:26Þ

The pressure ratio P02/P01 replaces the head H, while the mass flow rate m

(kg/s) replaces Q. Using the perfect gas equation, density may be written as

r ¼ P/RT . Now, deleting density and combining R with T, the functional

relationship can be written as

P02 ¼ f ðP01;RT01;RT02;m;N;D;mÞ ð1:27Þ
Substituting the basic dimensions and equating the indices, the following

fundamental relationship may be obtained

P02

P01

¼ f
RT02

RT01

� �
;

m
RT01

� �1/2

P01D2

0

B@

1

CA;
ND

RT01ð Þ1/2
� �

;Re

0

B@

1

CA ð1:28Þ

In Eq. (1.28), R is constant and may be eliminated. The Reynolds number in

most cases is very high and the flow is turbulent and therefore changes in this

parameter over the usual operating range may be neglected. However, due to

Figure 1.8 Compression andexpansion in compressibleflowmachines: (a) compression,

(b) expansion.
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large changes of density, a significant reduction in Re can occur which must be

taken into consideration. For a constant diameter machine, the diameterDmay be

ignored, and hence Eq. (1.28) becomes

P02

P01

¼ f
T02

T01

� �
;

mT1/2
01

P01

� �
;

N

T1/2
01

� �� �
ð1:29Þ

In Eq. (1.29) some of the terms are new and no longer dimensionless. For a

particular machine, it is typical to plot P02/P01 and T02/T01 against the mass flow

Figure 1.9 Axial flow compressor characteristics: (a) pressure ratio, (b) efficiency.

Figure 1.10 Axial flow gas turbine characteristics: (a) pressure ratio, (b) efficiency.
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rate parameter mT 1/2
01 /P01 for different values of the speed parameter N/T1/2

01 .

Equation (1.28)must be used if it is required to change the size of themachine. The

term ND/ðRT01Þ1/2 indicates the Mach number effect. This occurs because the

impeller velocity v / ND and the acoustic velocity a01 / RT01, while the Mach

number

M ¼ V /a01 ð1:30Þ
The performance curves for an axial flow compressor and turbine are

shown in Figs. 1.9 and 1.10.

1.15 BASIC THERMODYNAMICS, FLUID
MECHANICS, AND DEFINITIONS OF
EFFICIENCY

In this section, the basic physical laws of fluid mechanics and thermodynamics

will be discussed. These laws are:

1. The continuity equation.

2. The First Law of Thermodynamics.

3. Newton’s Second Law of Motion.

4. The Second Law of Thermodynamics.

The above items are comprehensively dealt with in books on thermo-

dynamics with engineering applications, so that much of the elementary

discussion and analysis of these laws need not be repeated here.

1.16 CONTINUITY EQUATION

For steady flow through a turbomachine, m remains constant. If A1 and A2 are the

flow areas at Secs. 1 and 2 along a passage respectively, then

_m ¼ r1A1C1 ¼ r2A2C2 ¼ constant ð1:31Þ
where r1, is the density at section 1, r2, the density at section 2, C1, the velocity at

section 1, and C2, is the velocity at section 2.

1.17 THE FIRST LAW OF THERMODYNAMICS

According to the First Law of Thermodynamics, if a system is taken through a

complete cycle during which heat is supplied and work is done, then
I

dQ2 dWð Þ ¼ 0 ð1:32Þ
where

H
dQ represents the heat supplied to the system during this cycle and

H
dW
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the work done by the system during the cycle. The units of heat and work are

taken to be the same. During a change of state from 1 to 2, there is a change in

the internal energy of the system

U2 2 U1 ¼
Z 2

1

dQ2 dWð Þ ð1:33Þ

For an infinitesimal change of state

dU ¼ dQ2 dW ð1:34Þ

1.17.1 The Steady Flow Energy Equation

The First Law of Thermodynamics can be applied to a system to find the change

in the energy of the system when it undergoes a change of state. The total energy

of a system, E may be written as:

E ¼ Internal Energyþ Kinetic Energyþ Potential Energy

E ¼ U þ K:E:þ P:E: ð1:35Þ
where U is the internal energy. Since the terms comprising E are point functions,

we can write Eq. (1.35) in the following form

dE ¼ dU þ dðK:E:Þ þ dðP:E:Þ ð1:36Þ

The First Law of Thermodynamics for a change of state of a system may

therefore be written as follows

dQ ¼ dU þ dðKEÞ þ dðPEÞ þ dW ð1:37Þ

Let subscript 1 represents the system in its initial state and 2 represents the system

in its final state, the energy equation at the inlet and outlet of any device may be

written

Q122 ¼ U2 2 U1 þ mðC2
2 2 C2

1Þ
2

þ mgðZ2 2 Z1Þ þW1–2 ð1:38Þ
Equation (1.38) indicates that there are differences between, or changes in,

similar forms of energy entering or leaving the unit. In many applications,

these differences are insignificant and can be ignored. Most closed systems

encountered in practice are stationary; i.e. they do not involve any changes in

their velocity or the elevation of their centers of gravity during a process.

Thus, for stationary closed systems, the changes in kinetic and potential

energies are negligible (i.e. K(K.E.) ¼ K(P.E.) ¼ 0), and the first law relation
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reduces to

Q2W ¼ DE ð1:39Þ
If the initial and final states are specified the internal energies 1 and 2 can easily

be determined from property tables or some thermodynamic relations.

1.17.2 Other Forms of the First Law Relation

The first law can be written in various forms. For example, the first law relation

on a unit-mass basis is

q2 w ¼ DeðkJ/kgÞ ð1:40Þ
Dividing Eq. (1.39) by the time interval Dt and taking the limit as Dt ! 0 yields

the rate form of the first law

_Q2 _W ¼ dE

dt
ð1:41Þ

where Q̇ is the rate of net heat transfer, Ẇ the power, and dE
dt
is the rate of change

of total energy. Equations. (1.40) and (1.41) can be expressed in differential form

dQ2 dW ¼ dEðkJÞ ð1:42Þ
dq2 dw ¼ deðkJ/kgÞ ð1:43Þ

For a cyclic process, the initial and final states are identical; therefore,

DE ¼ E2 2 E1.

Then the first law relation for a cycle simplifies to

Q2W ¼ 0ðkJÞ ð1:44Þ
That is, the net heat transfer and the net work done during a cycle must be equal.

Defining the stagnation enthalpy by: h0 ¼ hþ 1
2
c2 and assuming g (Z2 2 Z1) is

negligible, the steady flow energy equation becomes

_Q2 _W ¼ _mðh02 2 h01Þ ð1:45Þ
Most turbomachinery flow processes are adiabatic, and so Q̇ ¼ 0. For work

producing machines, Ẇ . 0; so that
_W ¼ _mðh01 2 h02Þ ð1:46Þ

For work absorbing machines (compressors) W , 0; so that

_W !2 _W ¼ _mðh02 2 h01Þ ð1:47Þ

1.18 NEWTON’S SECOND LAW OF MOTION

Newton’s Second Law states that the sum of all the forces acting on a control

volume in a particular direction is equal to the rate of change of momentum of the

fluid across the control volume. For a control volume with fluid entering with
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uniform velocity C1 and leaving with uniform velocity C2, then
X

F ¼ _mðC2 2 C1Þ ð1:48Þ
Equation (1.48) is the one-dimensional form of the steady flow momentum

equation, and applies for linear momentum. However, turbomachines have

impellers that rotate, and the power output is expressed as the product of torque and

angular velocity. Therefore, angular momentum is the most descriptive parameter

for this system.

1.19 THE SECOND LAW OF
THERMODYNAMICS: ENTROPY

This law states that for a fluid passing through a cycle involving heat exchanges
I

dQ

T
# 0 ð1:49Þ

where dQ is an element of heat transferred to the system at an absolute temperature

T. If all the processes in the cycle are reversible, so that dQ ¼ dQR, then
I

dQR

T
¼ 0 ð1:50Þ

The property called entropy, for a finite change of state, is then given by

S2 2 S1 ¼
Z 2

1

dQR

T
ð1:51Þ

For an incremental change of state

dS ¼ mds ¼ dQR

T
ð1:52Þ

where m is the mass of the fluid. For steady flow through a control volume in

which the fluid experiences a change of state from inlet 1 to outlet 2,
Z 2

1

d _Q

T
# _m s2 2 s1ð Þ ð1:53Þ

For adiabatic process, dQ ¼ 0 so that

s2 $ s1 ð1:54Þ
For reversible process

s2 ¼ s1 ð1:55Þ
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In the absence of motion, gravity and other effects, the first law of

thermodynamics, Eq. (1.34) becomes

Tds ¼ duþ pdv ð1:56Þ
Putting h ¼ u þ pv and dh ¼ du þ pdv þ vdp in Eq. (1.56) gives

Tds ¼ dh2 vdp ð1:57Þ

1.20 EFFICIENCY AND LOSSES

Let H be the head parameter (m), Q discharge (m3/s)

The waterpower supplied to the machine is given by

P ¼ rQgHðin wattsÞ ð1:58Þ

and letting r ¼ 1000 kg/m3,

¼ QgHðin kWÞ

Now, let DQ be the amount of water leaking from the tail race. This is the amount

of water, which is not providing useful work.

Then:

Power wasted ¼ DQðgHÞðkWÞ

For volumetric efficiency, we have

hn ¼ Q2 DQ

Q
ð1:59Þ

Net power supplied to turbine

¼ ðQ2 DQÞgHðkWÞ ð1:60Þ
If Hr is the runner head, then the hydraulic power generated by the runner is

given by

Ph ¼ ðQ2 DQÞgHrðkWÞ ð1:61Þ

The hydraulic efficiency, hh is given by

hh ¼ Hydraulic output power

Hydraulic input power
¼ ðQ2 DQÞgHr

ðQ2 DQÞgH ¼ Hr

H
ð1:62Þ
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If Pm represents the power loss due to mechanical friction at the bearing, then the

available shaft power is given by

Ps ¼ Ph 2 Pm ð1:63Þ
Mechanical efficiency is given by

hm ¼ Ps

Ph

¼ Ps

Pm 2 Ps

ð1:64Þ

The combined effect of all these losses may be expressed in the form of overall

efficiency. Thus

h0 ¼ Ps

WP
¼ hm

Ph

WP

¼ hm

WPðQ2 DQÞ
WPQDH

¼ hmhvhh ð1:65Þ

1.21 STEAM AND GAS TURBINES

Figure 1.11 shows an enthalpy–entropy or Mollier diagram. The process is

represented by line 1–2 and shows the expansion from pressure P1 to a lower

pressure P2. The line 1–2s represents isentropic expansion. The actual

Figure 1.11 Enthalpy–entropy diagrams for turbines and compressors: (a) turbine

expansion process, (b) compression process.
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turbine-specific work is given by

W t ¼ h01 2 h02 ¼ ðh1 2 h2Þ þ 1

2
ðC2

1 2 C2
2Þ ð1:66Þ

Similarly, the isentropic turbine rotor specific work between the same two

pressures is

W 0
t ¼ h01 2 h02s ¼ ðh1 2 h2sÞ þ 1

2
C2
1 2 C2

2s

� � ð1:67Þ
Efficiency can be expressed in several ways. The choice of definitions depends

largely upon whether the kinetic energy at the exit is usefully utilized or wasted.

In multistage gas turbines, the kinetic energy leaving one stage is utilized in

the next stage. Similarly, in turbojet engines, the energy in the gas exhausting

through the nozzle is used for propulsion. For the above two cases, the turbine

isentropic efficiency htt is defined as

h tt ¼ W t

W 0
t

¼ h01 2 h02

h01 2 h02s
ð1:68Þ

When the exhaust kinetic energy is not totally used but not totally wasted either,

the total-to-static efficiency, h ts, is used. In this case, the ideal or isentropic

turbine work is that obtained between static points 01 and 2s. Thus

h ts ¼ h01 2 h02

h01 2 h02s þ 1
2
C2
2s

¼ h01 2 h02

h01 2 h2s
ð1:69Þ

If the difference between inlet and outlet kinetic energies is small, Eq. (1.69)

becomes

h ts ¼ h1 2 h2

h1 2 h2s þ 1
2
C2
1s

An example where the outlet kinetic energy is wasted is a turbine exhausting

directly to the atmosphere rather than exiting through a diffuser.

1.22 EFFICIENCY OF COMPRESSORS

The isentropic efficiency of the compressor is defined as

hc ¼ Isentropic work

Actual work
¼ h02s 2 h01

h02 2 h01
ð1:70Þ

If the difference between inlet and outlet kinetic energies is small, 1
2
C2
1 ¼ 1

2
C2
2

and

hc ¼ h2s 2 h1

h2 2 h1
ð1:71Þ
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1.23 POLYTROPIC OR SMALL-STAGE EFFICIENCY

Isentropic efficiency as described above can bemisleading if used for compression

and expansion processes in several stages. Turbomachines may be used in large

numbers of very small stages irrespective of the actual number of stages in the

machine. If each small stage has the same efficiency, then the isentropic efficiency

of the whole machine will be different from the small stage efficiency, and this

difference is dependent upon the pressure ratio of the machine.

Isentropic efficiency of compressors tends to decrease and isentropic

efficiency of turbines tends to increase as the pressure ratios for which

the machines are designed are increased. This is made more apparent in the

following argument.

Consider an axial flow compressor, which is made up of several stages,

each stage having equal values of hc, as shown in Fig. 1.12.

Then the overall temperature rise can be expressed by

DT ¼
XDT 0

s

hs

¼ 1

hs

X
DT 0

s

Figure 1.12 Compression process in stages.

Basic Thermodynamics and Fluid Mechanics 25

Copyright 2003 by Marcel Dekker, Inc. All Rights Reserved



(Prime symbol is used for isentropic temperature rise, and subscript s is for

stage temperature).

Also, DT ¼ DT 0
/hc by definition of hc, and thus: hs/hc ¼

P
DTs

0/DT 0. It is
clear from Fig. 1.12 that

P
DT 0

s . DT 0. Hence, hc , hs and the difference will

increase with increasing pressure ratio. The opposite effect is obtained in a

turbine where hs (i.e., small stage efficiency) is less than the overall efficiency of

the turbine.

The above discussions have led to the concept of polytropic efficiency, h1,
which is defined as the isentropic efficiency of an elemental stage in the process

such that it is constant throughout the entire process.

The relationship between a polytropic efficiency, which is constant through

the compressor, and the overall efficiency hc may be obtained for a gas of

constant specific heat.

For compression,

h1c ¼ dT 0

dT
¼ constant

But, T
p ðg21Þ/g ¼ constant for an isentropic process, which in differential form is

dT 0

dT
¼ g2 1

g

dP

P

Now, substituting dT 0 from the previous equation, we have

h1c

dT 0

dT
¼ g2 1

g

dP

P

Integrating the above equation between the inlet 1 and outlet 2, we get

h1c ¼ lnðP2/P1Þ
g21
g

lnðT2/T1Þ ð1:72Þ

Equation (1.72) can also be written in the form

T2

T1

¼ P2

P1

� � g21
gh1c ð1:73Þ

The relation between h1c and hc is given by

hc ¼ ðT 0
2/T1Þ2 1

ðT2/T1Þ2 1
¼ ðP2/P1Þ

g21
g 2 1

ðP2/P1Þ
g21
gh1c 2 1

ð1:74Þ

From Eq. (1.74), if we write g21
gh1c

as n21
n
, Eq. (1.73) is the functional relation

between P and T for a polytropic process, and thus it is clear that the non

isentropic process is polytropic.
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Similarly, for an isentropic expansion and polytropic expansion, the

following relations can be developed between the inlet 1 and outlet 2:

T1

T2

¼ P1

P2

� �h1t g21ð Þ
g

and

ht ¼
12 1

P1/P2

� �h1t g21ð Þ
g

12 1
P1/P2

� � g21ð Þ
g

ð1:75Þ

where h1t is the small-stage or polytropic efficiency for the turbine.

Figure 1.13 shows the overall efficiency related to the polytropic efficiency

for a constant value of g ¼ 1.4, for varying polytropic efficiencies and for

varying pressure ratios.

As mentioned earlier, the isentropic efficiency for an expansion process

exceeds the small-stage efficiency. Overall isentropic efficiencies have been

Figure 1.13 Relationships among overall efficiency, polytropic efficiency, and

pressure ratio.
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calculated for a range of pressure ratios and different polytropic efficiencies.

These relationships are shown in Fig. 1.14.

1.24 NOZZLE EFFICIENCY

The function of the nozzle is to transform the high-pressure temperature

energy (enthalpy) of the gasses at the inlet position into kinetic energy. This is

achieved by decreasing the pressure and temperature of the gasses in the nozzle.

From Fig. 1.15, it is clear that the maximum amount of transformation will

result when we have an isentropic process between the pressures at the entrance

and exit of the nozzle. Such a process is illustrated as the path 1–2s. Now, when

nozzle flow is accompanied by friction, the entropy will increase. As a result, the

path is curved as illustrated by line 1–2. The difference in the enthalpy change

between the actual process and the ideal process is due to friction. This ratio is

known as the nozzle adiabatic efficiency and is called nozzle efficiency (hn) or jet

Figure 1.14 Turbine isentropic efficiency against pressure ratio for various polytropic

efficiencies (g ¼ 1.4).
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pipe efficiency (hj). This efficiency is given by:

hj ¼ Dh

Dh 0 ¼
h01 2 h02

h01 2 h02 0
¼ cp T01 2 T02ð Þ

cp T01 2 T02
0ð Þ ð1:76Þ

1.25 DIFFUSER EFFICIENCY

The diffuser efficiency hd is defined in a similar manner to compressor

efficiency (see Fig. 1.16):

hd ¼ Isentropic enthalpy rise

Actual enthalpy rise

¼ h2s 2 h1

h2 2 h1
ð1:77Þ

The purpose of diffusion or deceleration is to convert the maximum possible

kinetic energy into pressure energy. The diffusion is difficult to achieve

and is rightly regarded as one of the main problems of turbomachinery design.

This problem is due to the growth of boundary layers and the separation of the

fluid molecules from the diverging part of the diffuser. If the rate of diffusion is

too rapid, large losses in stagnation pressure are inevitable. On the other hand, if

Figure 1.15 Comparison of ideal and actual nozzle expansion on a T-s or h–s plane.
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the rate of diffusion is very low, the fluid is exposed to an excessive length of wall

and friction losses become predominant. To minimize these two effects, there

must be an optimum rate of diffusion.

1.26 ENERGY TRANSFER IN TURBOMACHINERY

This section deals with the kinematics and dynamics of turbomachines by means

of definitions, diagrams, and dimensionless parameters. The kinematics and

dynamic factors depend on the velocities of fluid flow in the machine as well as

the rotor velocity itself and the forces of interaction due to velocity changes.

1.27 THE EULER TURBINE EQUATION

The fluid flows through the turbomachine rotor are assumed to be steady over a

long period of time. Turbulence and other losses may then be neglected, and the

mass flow rate m is constant. As shown in Fig. 1.17, let v (omega) be the angular

velocity about the axis A–A.

Fluid enters the rotor at point 1 and leaves at point 2.

In turbomachine flow analysis, the most important variable is the fluid

velocity and its variation in the different coordinate directions. In the designing of

blade shapes, velocity vector diagrams are very useful. The flow in and across

Figure 1.16 Mollier diagram for the diffusion process.
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the stators, the absolute velocities are of interest (i.e., C). The flowvelocities across

the rotor relative to the rotating blade must be considered. The fluid enters with

velocity C1, which is at a radial distance r1 from the axis A–A. At point 2 the fluid

leaves with absolute velocity (that velocity relative to an outside observer). The

point 2 is at a radial distance r2 from the axis A–A. The rotating disc may be either

a turbine or a compressor. It is necessary to restrict the flow to a steady flow, i.e., the

mass flow rate is constant (no accumulation of fluid in the rotor). The velocityC1 at

the inlet to the rotor can be resolved into three components; viz.;

Ca1 — Axial velocity in a direction parallel to the axis of the rotating shaft.

Cr1 — Radial velocity in the direction normal to the axis of the rotating

shaft.

Cw1 — whirl or tangential velocity in the direction normal to a radius.

Similarly, exit velocity C2 can be resolved into three components; that is,

Ca2, Cr2, and Cw2. The change in magnitude of the axial velocity components

through the rotor gives rise to an axial force, which must be taken by a thrust

bearing to the stationary rotor casing. The change in magnitude of the radial

velocity components produces radial force. Neither has any effect on the angular

motion of the rotor. The whirl or tangential components Cw produce the

rotational effect. This may be expressed in general as follows:

The unit mass of fluid entering at section 1 and leaving in any unit of time

produces:

The angular momentum at the inlet: Cw1r1

The angular momentum at the outlet: Cw2r2

And therefore the rate of change of angular momentum ¼ Cw1r1 – Cw2r2

Figure 1.17 Velocity components for a generalized rotor.
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By Newton’s laws of motion, this is equal to the summation of all the

applied forces on the rotor; i.e., the net torque of the rotor t (tau). Under steady
flow conditions, using mass flow rate m, the torque exerted by or acting on the

rotor will be:

t ¼ m Cw1r1 2 Cw2r2ð Þ
Therefore the rate of energy transfer, W, is the product of the torque and the

angular velocity of the rotor v (omega), so:

W ¼ tv ¼ mv Cw1r1 2 Cw2r2ð Þ
For unit mass flow, energy will be given by:

W ¼ vðCw1r1 2 Cw2r2Þ ¼ Cw1r1v2 Cw2r2vð Þ
But, v r1 ¼ U1 and v r2 ¼ U2.

Hence;W ¼ Cw1U1 2 Cw2U2ð Þ; ð1:78Þ
where, W is the energy transferred per unit mass, and U1 and U2 are the rotor

speeds at the inlet and the exit respectively. Equation (1.78) is referred to as

Euler’s turbine equation. The standard thermodynamic sign convention is that

work done by a fluid is positive, and work done on a fluid is negative. This means

the work produced by the turbine is positive and the work absorbed by the

compressors and pumps is negative. Therefore, the energy transfer equations can

be written separately as

W ¼ Cw1U1 2 Cw2U2ð Þ for turbine
and

W ¼ Cw2U2 2 Cw1U1ð Þ for compressor and pump:

The Euler turbine equation is very useful for evaluating the flow of fluids that

have very small viscosities, like water, steam, air, and combustion products.

To calculate torque from the Euler turbine equation, it is necessary to

know the velocity components Cw1, Cw2, and the rotor speeds U1 and U2 or

the velocities V1, V2, Cr1, Cr2 as well as U1 and U2. These quantities can be

determined easily by drawing the velocity triangles at the rotor inlet and outlet,

as shown in Fig. 1.18. The velocity triangles are key to the analysis of turbo-

machinery problems, and are usually combined into one diagram. These triangles

are usually drawn as a vector triangle:

Since these are vector triangles, the two velocities U and V are relative to

one another, so that the tail of V is at the head of U. Thus the vector sum of U and

V is equal to the vector C. The flow through a turbomachine rotor, the absolute

velocities C1 and C2 as well as the relative velocities V1 and V2 can have three
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components as mentioned earlier. However, the two velocity components,

one tangential to the rotor (Cw) and another perpendicular to it are sufficient.

The component Cr is called the meridional component, which passes through the

point under consideration and the turbomachine axis. The velocity components

Cr1 and Cr2 are the flow velocity components, which may be axial or radial

depending on the type of machine.

1.28 COMPONENTS OF ENERGY TRANSFER

The Euler equation is useful because it can be transformed into other forms,

which are not only convenient to certain aspects of design, but also useful in

Figure 1.18 Velocity triangles for a rotor.
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understanding the basic physical principles of energy transfer. Consider the

fluid velocities at the inlet and outlet of the turbomachine, again designated

by the subscripts 1 and 2, respectively. By simple geometry,

C2
r2 ¼ C2

2 2 C2
w2

and

C2
r2 ¼ V2

2 2 U2 2 Cw2ð Þ2
Equating the values of C2

r2 and expanding,

C2
2 2 C2

w2 ¼ V2
2 2 U2

2 þ 2U2Cw2 2 C2
w2

and

U2Cw2 ¼ 1

2
C2
2 þ U2

2 2 V2
2

� �

Similarly,

U1Cw1 ¼ 1

2
ðC2

1 þ U2
1 2 V2

1Þ
Inserting these values in the Euler equation,

E ¼ 1

2
ðC2

1 2 C2
2Þ þ ðU2

1 2 U2
2Þ þ ðV2

1 2 V2
2Þ

	 
 ð1:79Þ
The first term, 1

2
ðC2

1 2 C2
2Þ, represents the energy transfer due to change of

absolute kinetic energy of the fluid during its passage between the entrance and

exit sections. In a pump or compressor, the discharge kinetic energy from the

rotor, 1
2
C2
2, may be considerable. Normally, it is static head or pressure that is

required as useful energy. Usually the kinetic energy at the rotor outlet is

converted into a static pressure head by passing the fluid through a diffuser. In a

turbine, the change in absolute kinetic energy represents the power transmitted

from the fluid to the rotor due to an impulse effect. As this absolute kinetic energy

change can be used to accomplish rise in pressure, it can be called a “virtual

pressure rise” or “a pressure rise” which is possible to attain. The amount of

pressure rise in the diffuser depends, of course, on the efficiency of the diffuser.

Since this pressure rise comes from the diffuser, which is external to the rotor,

this term, i.e., 1
2
ðC2

1 2 C2
2Þ, is sometimes called an “external effect.”

The other two terms of Eq. (1.79) are factors that produce pressure rise

within the rotor itself, and hence they are called “internal diffusion.” The

centrifugal effect, 1
2
ðU2

1 2 U2
2Þ, is due to the centrifugal forces that are developed

as the fluid particles move outwards towards the rim of the machine. This effect

is produced if the fluid changes radius as it flows from the entrance to the exit

section. The third term, 1
2
ðV2

1 2 V2
2Þ, represents the energy transfer due to the

change of the relative kinetic energy of the fluid. If V2. V1, the passage acts like a

nozzle and if V2 , V1, it acts like a diffuser. From the above discussions, it is
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apparent that in a turbocompresser, pressure rise occurs due to both external effects

and internal diffusion effect. However, in axial flow compressors, the centrifugal

effects are not utilized at all. This is why the pressure rise per stage is less than in a

machine that utilizes all the kinetic energy effects available. It should be noted that

the turbine derives power from the same effects.

Illustrative Example 1.1: A radial flow hydraulic turbine produces 32 kW

under a head of 16mand running at 100 rpm.Ageometrically similarmodel producing

42 kWand ahead of 6m is to be tested under geometrically similar conditions. Ifmodel

efficiency is assumed to be 92%, find the diameter ratio between the model and

prototype, the volume flow rate through the model, and speed of the model.

Solution:

Assuming constant fluid density, equating head, flow, and power

coefficients, using subscripts 1 for the prototype and 2 for the model, we

have from Eq. (1.19),

P1

r1N
3
1D

5
1

� � ¼ P2

r2N
3
2D

5
2

� � ; where r1 ¼ r2:

Then,
D2

D1

¼ P2

P1

� �1
5 N1

N2

� �3
5

or
D2

D1

¼ 0:032

42

� �1
5 N1

N2

� �3
5

¼ 0:238
N1

N2

� �3
5

Also, we know from Eq. (1.19) that

gH1

N1D1ð Þ2 ¼
gH2

N2D2ð Þ2 ðgravity remains constantÞ
Then

D2

D1

¼ H2

H1

� �1
2 N1

N2

� �
¼ 6

16

� �1
2 N1

N2

� �

Equating the diameter ratios, we get

0:238
N1

N2

� �3
5

¼ 6

16

� �1
2 N1

N2

� �

or

N2

N1

� �2
5

¼ 0:612

0:238
¼ 2:57

Therefore the model speed is

N2 ¼ 100 £ 2:57ð Þ52 ¼ 1059 rpm
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Model scale ratio is given by

D2

D1

¼ 0:238ð Þ 100

1059

� �3
5

¼ 0:238ð0:094Þ0:6 ¼ 0:058:

Model efficiency is hm ¼ Power output

Water power input
or,

0:92 ¼ 42 £ 103

rgQH
;

or,

Q ¼ 42 £ 103

0:92 £ 103 £ 9:81 £ 6
¼ 0:776 m3/s

Illustrative Example 1.2: A centrifugal pump delivers 2.5m3/s under a

head of 14m and running at a speed of 2010 rpm. The impeller diameter of the

pump is 125mm. If a 104mm diameter impeller is fitted and the pump runs at a

speed of 2210 rpm, what is the volume rate? Determine also the new pump head.

Solution:

First of all, let us assume that dynamic similarity exists between the two

pumps. Equating the flow coefficients, we get [Eq. (1.3)]

Q1

N1D
3
1

¼ Q2

N2D
3
2

or
2:5

2010 £ ð0:125Þ3 ¼
Q2

2210 £ ð0:104Þ3

Solving the above equation, the volume flow rate of the second pump is

Q2 ¼ 2:5 £ 2210 £ ð0:104Þ3
2010 £ ð0:125Þ3 ¼ 1:58 m3/s

Now, equating head coefficients for both cases gives [Eq. (1.9)]

gH1/N
2
1D

2
1 ¼ gH2/N

2
2D

2
2

Substituting the given values,

9:81 £ 14

ð2010 £ 125Þ2 ¼
9:81 £ H2

ð2210 £ 104Þ2

Therefore, H2 ¼ 11.72m of water.
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IllustrativeExample1.3:Anaxialflowcompressor handlingair anddesigned

to run at 5000 rpm at ambient temperature and pressure of 188C and 1.013 bar,

respectively. The performance characteristic of the compressor is obtained at the

atmosphere temperature of 258C.What is the correct speed at which the compressor

must run? If an entry pressure of 65 kPa is obtained at the point where the mass flow

rate would be 64kg/s, calculate the expected mass flow rate obtained in the test.

Solution:
Since the machine is the same in both cases, the gas constant R and

diameter can be cancelled from the operating equations. Using first the

speed parameter,

N1ffiffiffiffiffiffiffi
T01

p ¼ N2ffiffiffiffiffiffiffi
T02

p

Therefore,

N2 ¼ 5000
273þ 25

273þ 18

� �1
2

¼ 5000
298

291

� �0:5

¼ 5060 rpm

Hence, the correct speed is 5060 rpm. Now, considering the mass flow

parameter,

m1

ffiffiffiffiffiffiffi
T01

p
p01

¼ m2

ffiffiffiffiffiffiffi
T02

p
p02

Therefore,

m2 ¼ 64 £ 65

101:3

� �
291

298

� �0:5

¼ 40:58 kg/s

Illustrative Example 1.4: A pump discharges liquid at the rate of Q

against a head ofH. If specific weight of the liquid is w, find the expression for the

pumping power.

Solution:

Let Power P be given by:

P ¼ f ðw;Q;HÞ ¼ kwaQbH c

where k, a, b, and c are constants. Substituting the respective dimensions in

the above equation,

ML2T23 ¼ kðML22T22ÞaðL3T21ÞbðLÞc

Equating corresponding indices, for M, 1 ¼ a or a ¼ 1; for L, 2 ¼ 22a þ
3b þ c; and for T, 23 ¼ 22a 2 b or b ¼ 1, so c ¼ 1.
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Therefore,

P ¼ kwQH

Illustrative Example 1.5: Prove that the drag force F on a partially

submerged body is given by:

F ¼ V 2l2r f
k

l
;
lg

V 2

� �

where V is the velocity of the body, l is the linear dimension, r, the fluid density, k
is the rms height of surface roughness, and g is the gravitational acceleration.

Solution:

Let the functional relation be:

F ¼ f ðV ; l; k; r; gÞ
Or in the general form:

F ¼ f ðF;V ; l; k; r; gÞ ¼ 0

In the above equation, there are only two primary dimensions. Thus,m ¼ 2.

Taking V, l, and r as repeating variables, we get:

P1 ¼ ðVÞaðlÞb r
� �c

F

MoLoTo ¼ ðLT21ÞaðLÞbðML23ÞcðMLT22Þ
Equating the powers of M, L, and T on both sides of the equation, for M,

0 ¼ c þ 1 or c ¼ 21; for T, 0 ¼ 2a 2 2 or a ¼ 22; and for L, 0 ¼ a þ
b2 3c þ 1 or b ¼ 22.

Therefore,

P1 ¼ ðVÞ22ðlÞ22ðrÞ21F ¼ F

V 2l2r

Similarly,

P2 ¼ ðVÞdðlÞe r
� �f ðkÞ

Therefore,

M0L0T0 ¼ ðLT21ÞdðLÞeðML23Þ f ðLÞ
for M, 0 ¼ f or f ¼ 0; for T, 0 ¼ 2d or d ¼ 0; and for L, 0 ¼ d þ e 2 3fþ
1 or e ¼ 21.

Thus,

P2 ¼ ðVÞ0ðlÞ21ðrÞ0k ¼ k

l
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and

P3 ¼ ðVÞgðlÞh r
� �iðgÞ

M0L0T0 ¼ ðLT21ÞgðLÞhðML23ÞiðLT22Þ
Equating the exponents gives, for M, 0 ¼ i or i ¼ 0; for T, 0 ¼ 2g–2 or

g ¼2 2; for L, 0 ¼ g þ h 2 3i þ 1 or h ¼ 1.

Therefore; P3 ¼ V 22l1r0g ¼ lg

V 2

Now the functional relationship may be written as:

f
F

V 2l2r
;
k

l
;
lg

V 2

� �
¼ 0

Therefore,

F ¼ V 2l 2r f
k

l
;
lg

V 2

� �

Illustrative Example 1.6: Consider an axial flow pump, which has rotor

diameter of 32 cm that discharges liquid water at the rate of 2.5m3/min while

running at 1450 rpm. The corresponding energy input is 120 J/kg, and the total

efficiency is 78%. If a second geometrically similar pump with diameter of 22 cm

operates at 2900 rpm, what are its (1) flow rate, (2) change in total pressure, and

(3) input power?

Solution:

Using the geometric and dynamic similarity equations,

Q1

N1D
2
1

¼ Q2

N2D
2
2

Therefore,

Q2 ¼ Q1N2D
2
2

N1D
2
1

¼ ð2:5Þð2900Þð0:22Þ2
ð1450Þð0:32Þ2 ¼ 2:363 m3/min

As the head coefficient is constant,

W2 ¼ W1N
2
2D

2
2

N2
1D

2
1

¼ ð120Þð2900Þ2ð0:22Þ2
ð1450Þ2ð0:32Þ2 ¼ 226:88 J/kg

The change in total pressure is:

DP ¼ W2httr ¼ ð226:88Þð0:78Þð1000Þ N/m2

¼ ð226:88Þð0:78Þð1000Þ1025 ¼ 1:77 bar
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Input power is given by

P ¼ _mW2 ¼ ð1000Þð2:363Þð0:22688Þ
60

¼ 8:94 kW

Illustrative Example 1.7: Consider an axial flow gas turbine in which air

enters at the stagnation temperature of 1050K. The turbine operates with a total

pressure ratio of 4:1. The rotor turns at 15500 rpm and the overall diameter of the

rotor is 30 cm. If the total-to-total efficiency is 0.85, find the power output per kg

per second of airflow if the rotor diameter is reduced to 20 cm and the rotational

speed is 12,500 rpm. Take g ¼ 1.4.

Solution:

Using the isentropic P–T relation:

T
0
02 ¼ T01

P02

P01

� � g21ð Þ
2

¼ ð1050Þ 1

4

� �0:286

¼ 706:32K

Using total-to-total efficiency,

T01 2 T02 ¼ T01 2 T 0
02

� �
h tt ¼ ð343:68Þð0:85Þ ¼ 292:13 K

and

W1 ¼ cpDT0 ¼ ð1:005Þð292:13Þ ¼ 293:59 kJ/kg

W2 ¼ W1N
2
2D

2
2

N2
1D

2
1

¼ ð293:59 £ 103Þð12; 500Þ2ð0:20Þ2
ð15; 500Þ2ð0:30Þ2

¼ 84; 862 J/kg

[ Power output ¼ 84.86 kJ/kg

Illustrative Example 1.8: At what velocity should tests be run in a wind

tunnel on a model of an airplane wing of 160mm chord in order that the Reynolds

number should be the same as that of the prototype of 1000mm chord moving at

40.5m/s. Air is under atmospheric pressure in the wind tunnel.

Solution:

Let

Velocity of the model: Vm

Length of the model : Lm ¼ 160 mm

Length of the prototype: Lp ¼ 1000 mm

Velocity of the prototype : Vp ¼ 40:5 m/s
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According to the given conditions:

ðReÞm ¼ ðReÞp
VmLm

nm
¼ VpLp

np
; Therefore; vm ¼ vp ¼ vair

Hence

VmLm ¼ VpLp;

or

Vm ¼ LpVp/Lm ¼ 40:5 £ 1000/160 ¼ 253:13 m/s

Illustrative Example 1.9: Show that the kinetic energy of a body equals

kmV 2 using the method of dimensional analysis.

Solution:

Since the kinetic energy of a body depends on its mass and velocity,

K:E: ¼ f ðV ; mÞ; or K:E: ¼ kV amb:

Dimensionally,

FLT0 ¼ ðLT�1ÞaðFT2L�1Þb

Equating the exponents of F, L, and T, we get:

F: 1 ¼ b; L: 1 ¼ a2 b; T: 0 ¼2 aþ 2b

This gives b ¼ 1 and a ¼ 2. So, K.E. ¼ kV2m, where k is a constant.

Illustrative Example 1.10: Consider a radial inward flow machine, the

radial and tangential velocity components are 340m/s and 50m/s, respectively,

and the inlet and the outlet radii are 14 cm and 7 cm, respectively. Find the torque

per unit mass flow rate.

Solution:

Here,

r1 ¼ 0:14 m

Cw1 ¼ 340 m/s;

r2 ¼ 0:07 m

Cw2 ¼ 50 m/s
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Torque is given by:

T ¼ r1Cw1 2 r2Cw2

¼ ð0:14 £ 3402 0:07 £ 50Þ
¼ ð47:62 3:5Þ ¼ 44:1 N-m per kg/s

PROBLEMS

1.1 Show that the power developed by a pump is given by

P ¼ kwQH

where k ¼ constant, w ¼ specific weight of liquid, Q ¼ rate of discharge,

and H ¼ head dimension.

1.2 Develop an expression for the drag force on a smooth sphere of diameter D

immersed in a liquid (of density r and dynamic viscosity m) moving with

velocity V.

1.3 The resisting force F of a supersonic plane in flight is given by:

F ¼ f ðL;V; r;m; kÞ
where L ¼ the length of the aircraft, V ¼ velocity, r ¼ air density, m ¼ air

viscosity, and k ¼ the bulk modulus of air.

1.4 Show that the resisting force is a function of Reynolds number and Mach

number.

1.5 The torque of a turbine is a function of the rate of flow Q, head H, angular

velocity v, specific weight w of water, and efficiency. Determine the torque

equation.

1.6 The efficiency of a fan depends on density r, dynamic viscosity m of the

fluid, angular velocity v, diameter D of the rotor and discharge Q. Express

efficiency in terms of dimensionless parameters.

1.7 The specific speed of a Kaplan turbine is 450 when working under a head of

12m at 150 rpm. If under this head, 30,000 kW of energy is generated,

estimate how many turbines should be used.

(7 turbines).

1.8 By using Buckingham’s P theorem, show that dimensionless expression

KP is given by:

DP ¼ 4 f V 2r l

2D
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where KP ¼ pressure drop in a pipe, V ¼ mean velocity of the flow,

l ¼ length of the pipe, D ¼ diameter of the pipe, m ¼ viscosity of the

fluid, k ¼ average roughness of the pipe, and r ¼ density of the fluid.

1.9 If Hf is the head loss due to friction (KP/w) and w is the specific weight of

the fluid, show that

H f ¼ 4 f V 2l

2gD

(other symbols have their usual meaning).

1.10 Determine the dimensions of the following in M.L.T and F.L.T systems:

(1) mass, (2) dynamic viscosity, and (3) shear stress.

M;FT2L21;ML21T21; FTL22;ML21T22; FL23
� �

NOTATION

Ar area ratio

a sonic velocity

Br breadth of prototype

C velocity of gas, absolute velocity of turbo machinery

D diameter of pipe, turbine runner, or pump

Dp depth of the prototype

E energy transfer by a rotor or absorbed by the rotor

F force

Fr force ratio

g local acceleration due to gravity

H head

h specific enthalpy

h0 stagnation enthalpy

K.E. kinetic energy

L length

Lp length of prototype

Lr scale ratio

M Mach number

m mass rate of flow

N speed

Ns specific speed

P power

Ph hydraulic power

Pm power loss due to mechanical friction at the bearing

Ps shaft power

P.E. potential energy
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p fluid pressure

p0 stagnation pressure

Q volume rate of flow, heat transfer

R gas constant

Re Reynolds number

r radius of rotor

s specific entropy

sp . gr specific gravity of fluid

T temperature, time

T0 stagnation temperature

t time

U rotor speed

V relative velocity, mean velocity

W work

Vr volume ratio, velocity ratio

Wt actual turbine work output

Wt
0 isentropic turbine work output

a absolute air angle

b relative air angle

g specific weight, specific heat ratio

h efficiency

h/c polytropic efficiency of compressor

h/t polytropic efficiency of turbine

hc compressor efficiency

hd diffuser efficiency

hh hydraulic efficiency

hj jet pipe or nozzle efficiency

hm mechanical efficiency

ho overall efficiency

hp prototype efficiency

hs isentropic efficiency

ht turbine efficiency

hts total-to-static efficiency

htt total-to-total efficiency

hv volumetric efficiency

m absolute or dynamic viscosity

n kinematic viscosity

P dimensionless parameter

r mass density

t shear stress, torque exerted by or acting on the rotor

v angular velocity
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SUFFIXES

0 stagnation conditions

1 inlet to rotor

2 outlet from the rotor

3 outlet from the diffuser

a axial

h hub

r radial

t tip

w whirl or tangential
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