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Introduction: Dimensional
Analysis—Basic Thermodynamics
and Fluid Mechanics

1.1 INTRODUCTION TO TURBOMACHINERY

A turbomachine is a device in which energy transfer occurs between a flowing fluid
and a rotating element due to dynamic action, and results in a change in pressure
and momentum of the fluid. Mechanical energy transfer occurs inside or outside of
the turbomachine, usually in a steady-flow process. Turbomachines include all
those machines that produce power, such as turbines, as well as those types that
produce a head or pressure, such as centrifugal pumps and compressors. The
turbomachine extracts energy from or imparts energy to a continuously moving
stream of fluid. However in a positive displacement machine, it is intermittent.

The turbomachine as described above covers a wide range of machines,
such as gas turbines, steam turbines, centrifugal pumps, centrifugal and axial flow
compressors, windmills, water wheels, and hydraulic turbines. In this text, we
shall deal with incompressible and compressible fluid flow machines.

1.2 TYPES OF TURBOMACHINES

There are different types of turbomachines. They can be classified as:

1. Turbomachines in which (i) work is done by the fluid and (ii) work is
done on the fluid.
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Figure 1.1 Types and shapes of turbomachines.
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2. Turbomachines in which fluid moves through the rotating member in
axial direction with no radial movement of the streamlines. Such
machines are called axial flow machines whereas if the flow is
essentially radial, it is called a radial flow or centrifugal flow machine.
Some of these machines are shown in Fig. 1.1, and photographs of
actual machines are shown in Figs. 1.2—1.6. Two primary points will
be observed: first, that the main element is a rotor or runner carrying
blades or vanes; and secondly, that the path of the fluid in the rotor may
be substantially axial, substantially radial, or in some cases a
combination of both. Turbomachines can further be classified as
follows:

Turbines: Machines that produce power by expansion of a
continuously flowing fluid to a lower pressure or head.

Pumps: Machines that increase the pressure or head of flowing
fluid.

Fans: Machines that impart only a small pressure-rise to a
continuously flowing gas; usually the gas may be considered
to be incompressible.

Figure 1.2 Radial flow fan rotor. (Courtesy of the Buffalo Forge Corp.)
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Figure 1.3 Centrifugal compressor rotor (the large double-sided impellar on the right is
the main compressor and the small single-sided impellar is an auxiliary for cooling
purposes). (Courtesy of Rolls-Royce, Ltd.)

Figure 1.4 Centrifugal pump rotor (open type impeller). (Courtesy of the Ingersoll-
Rand Co.)
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Figure 1.5 Multi-stage axial flow compressor rotor. (Courtesy of the Westinghouse
Electric Corp.)

Figure 1.6 Axial flow pump rotor. (Courtesy of the Worthington Corp.)
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Compressors: Machines that impart kinetic energy to a gas
by compressing it and then allowing it to rapidly expand.
Compressors can be axial flow, centrifugal, or a combination
of both types, in order to produce the highly compressed air. In
a dynamic compressor, this is achieved by imparting kinetic
energy to the air in the impeller and then this kinetic energy is
converted into pressure energy in the diffuser.

1.3 DIMENSIONAL ANALYSIS

To study the performance characteristics of turbomachines, a large number of
variables are involved. The use of dimensional analysis reduces the variables to a
number of manageable dimensional groups. Usually, the properties of interest in
regard to turbomachine are the power output, the efficiency, and the head. The
performance of turbomachines depends on one or more of several variables.
A summary of the physical properties and dimensions is given in Table 1.1 for
reference.

Dimensional analysis applied to turbomachines has two more important
uses: (1) prediction of a prototype’s performance from tests conducted on a scale

Table 1.1 Physical Properties and

Dimensions

Property Dimension
Surface L?
Volume L}
Density M/L?
Velocity L/T
Acceleration L/T?
Momentum ML/T
Force ML/T?
Energy and work ML?/T?
Power ML*/T?
Moment of inertia ML?
Angular velocity T
Angular acceleration T?
Angular momentum ML*/T
Torque ML?/T?
Modules of elasticity M/LT?
Surface tension M/T?
Viscosity (absolute) M/LT
Viscosity (kinematic) LYT
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model (similitude), and (2) determination of the most suitable type of machine,
on the basis of maximum efficiency, for a specified range of head, speed, and flow
rate. It is assumed here that the student has acquired the basic techniques of
forming nondimensional groups.

1.4 DIMENSIONS AND EQUATIONS

The variables involved in engineering are expressed in terms of a limited number
of basic dimensions. For most engineering problems, the basic dimensions are:

1. ST system: mass, length, temperature and time.
2. English system: mass, length, temperature, time and force.

The dimensions of pressure can be designated as follows

F
P= Iz (1.1)
Equation (1.1) reads as follows: “The dimension of P equals force per
length squared.” In this case, L? represents the dimensional characteristics of
area. The left hand side of Eq. (1.1) must have the same dimensions as the right
hand side.

1.5 THE BUCKINGHAM II THEOREM

In 1915, Buckingham showed that the number of independent dimensionless
group of variables (dimensionless parameters) needed to correlate the unknown
variables in a given process is equal to n — m, where n is the number of variables
involved and m is the number of dimensionless parameters included in the
variables. Suppose, for example, the drag force F of a flowing fluid past a sphere
is known to be a function of the velocity (v) mass density (p) viscosity (u) and
diameter (D). Then we have five variables (F, v, p, u, and D) and three basic
dimensions (L, F, and T') involved. Then, there are 5 — 3 = 2 basic grouping of
variables that can be used to correlate experimental results.

1.6 HYDRAULIC MACHINES

Consider a control volume around the pump through which an incompressible
fluid of density p flows at a volume flow rate of Q.

Since the flow enters at one point and leaves at another point the volume
flow rate Q can be independently adjusted by means of a throttle valve. The
discharge Q of a pump is given by

Q=f(N,D,g,H,up) (1.2)
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where H is the head, D is the diameter of impeller, g is the acceleration due to
gravity, pis the density of fluid, N is the revolution, and w is the viscosity of fluid.

In Eq. (1.2), primary dimensions are only four. Taking N, D, and p as
repeating variables, we get

I = W)'(D)°(p) (Q)

MOLOTO — (T* 1 )a(L)b(ML*3)C(L3T*1)
For dimensional homogeneity, equating the powers of M, L, and T on both sides
of the equation: for M,0 = corc = 0; forT,0 = —a—1lora = —1;forL,

O0=b—3c+3orb=—3.
Therefore,

0

— —“1n-3_ 0 _

Similarly,
e/ A\
I, = (V' (D)* (p) (2)
Now, equating the exponents: for M, O =f or f=0; for T, 0= —d —2

ord=—2;forL,0=e —3f+ lore= —1.

Thus,
- g
II,=N"2D lpOgZNTD (1.4)

Similarly,
Iy = (VDY (p)'(H)
MOLOT = (T~ H)*(L)" (ML ?)'(L)

Equating the exponents: for M, 0 = iori=0;for T,0= —gorg=0; for L,
O=h—-—3i+1lorh= —1.

Thus,
H
I; =N°D'p°H == (1.5)
D
and,
; !
IL, = (NY(D)* (p) ()
Equating the exponents: for M,0 = [+ lor!/ = —1;forT,0 = —j— lor

j= —1l;forL,0 = k-3l — lork= —2.
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Thus,

n
ND2p

y=N"'"D%p 'lu= (1.6)

The functional relationship may be written as
F; Q & H pr \_,
ND3'N2D’D’ND?p

Since the product of two 11 terms is dimensionless, therefore replace the terms 11,
and I1; by gh/N’D?>

7 Q 8H w \_,
ND3'N2D2’ND?p

or

gH  p
P ’Nozp) =0 1.7

Q=ND3f<

A dimensionless term of extremely great importance that may be obtained by
manipulating the discharge and head coefficients is the specific speed, defined by
the equation

Flow coefficient 34

Ny=\/—7F——F——"=N H 1.8

‘ Head coefficient \/é/ (g ) (1.8)

The following few dimensionless terms are useful in the analysis of
incompressible fluid flow machines:

1. The flow coefficient and speed ratio: The term Q/(ND?) is called the
flow coefficient or specific capacity and indicates the volume flow rate
of fluid through a turbomachine of unit diameter runner, operating at
unit speed. It is constant for similar rotors.

2. The head coefficient: The term gH/N>D? is called the specific head.
It is the kinetic energy of the fluid spouting under the head H divided by
the kinetic energy of the fluid running at the rotor tangential speed. It is
constant for similar impellers.

y=H/(U%lg) = gHl(m*N*D?) (1.9)

3. Power coefficient or specific power: The dimensionless quantity
P/ApN>D?) is called the power coefficient or the specific power. It
shows the relation between power, fluid density, speed and wheel
diameter.

4. Specific speed: The most important parameter of incompressible fluid
flow machinery is specific speed. It is the non-dimensional term. All
turbomachineries operating under the same conditions of flow and head
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having the same specific speed, irrespective of the actual physical size
of the machines. Specific speed can be expressed in this form

N, = N\/0l(gH)"* = NVPI| p"? (gH) ™| (1.10)

The specific speed parameter expressing the variation of all the variables N,
Q and H or N,P and H, which cause similar flows in turbomachines that are
geometrically similar. The specific speed represented by Eq. (1.10) is a
nondimensional quantity. It can also be expressed in alternate forms.

These are

N, = N+/Q/H>"* (1.11)
and

N = N/PIH™ (1.12)

Equation (1.11) is used for specifying the specific speeds of pumps and Eq. (1.12)
is used for the specific speeds of turbines. The turbine specific speed may be
defined as the speed of a geometrically similar turbine, which develops 1 hp
under a head of 1 meter of water. It is clear that N, is a dimensional quantity. In
metric units, it varies between 4 (for very high head Pelton wheel) and 1000 (for
the low-head propeller on Kaplan turbines).

1.7 THE REYNOLDS NUMBER
Reynolds number is represented by

Re = D*N/v
where v is the kinematic viscosity of the fluid. Since the quantity D 2N is
proportional to DV for similar machines that have the same speed ratio. In flow
through turbomachines, however, the dimensionless parameter D >N/v is not as
important since the viscous resistance alone does not determine the machine
losses. Various other losses such as those due to shock at entry, impact,
turbulence, and leakage affect the machine characteristics along with various
friction losses.

Consider a control volume around a hydraulic turbine through which an
incompressible fluid of density p flows at a volume flow rate of Q, which is
controlled by a valve. The head difference across the control volume is H, and if
the control volume represents a turbine of diameter D, the turbine develops
a shaft power P at a speed of rotation N. The functional equation may be
written as

P=f(p,N,u,D,0Q,gH) (1.13)
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Equation (1.13) may be written as the product of all the variables raised to a
power and a constant, such that

P = const. (p“Nh;LCDdQ“’(gH)f) (1.14)
Substituting the respective dimensions in the above Eq. (1.14),
(ML*/T?) = const.(M/L*)*(1/T)’(M/LT)" (LY (L /T)*(LHT? ! (1.15)

Equating the powers of M, L, and T on both sides of the equation: for M, 1 =
a+ cforL,2=—-3a — c+ d+3e+2fforT, =3=—-b — c — e — 2f.

There are six variables and only three equations. It is therefore necessary to
solve for three of the indices in terms of the remaining three. Solving for a, b, and
d in terms of ¢, e, and f we have:

a=1-c¢
b=3—c—e—2f
d=5—2c—3e—-2f

Substituting the values of a, b, and d in Eq. (1.13), and collecting like indices into

separate brackets,
c e H f
N3DS s 0 8
(P )7 (pND2> ’ (ND3 "\ N2D2

In Eq. (1.16), the second term in the brackets is the inverse of the Reynolds
number. Since the value of ¢ is unknown, this term can be inverted and Eq. (1.16)

may be written as
pND\“ [ Q \° ( gH \/
o "\ND3) "\N2D?

In Eq. (1.17) each group of variables is dimensionless and all are used in
hydraulic turbomachinery practice, and are known by the following names: the
power coefficient (P/pN D3 = F); the flow coefficient (Q/ND3 = q,’)); and the
head coefficient (gH/N>D? = i)).

Eqution (1.17) can be expressed in the following form:

P =f(Re, b, ) (1.18)

Equation (1.18) indicates that the power coefficient of a hydraulic machine is a
function of Reynolds number, flow coefficient and head coefficient. In flow
through hydraulic turbomachinery, Reynolds number is usually very high.
Therefore the viscous action of the fluid has very little effect on the power output
of the machine and the power coefficient remains only a function of ¢ and .

P = const.

(1.16)

PIpN>D> = const.

(1.17)
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Figure 1.7 Performance characteristics of hydraulic machines: (a) hydraulic turbine,
(b) hydraulic pump.

Typical dimensionless characteristic curves for a hydraulic turbine and pump are
shown in Fig. 1.7 (a) and (b), respectively. These characteristic curves are also
the curves of any other combination of P, N, Q, and H for a given machine or for
any other geometrically similar machine.

1.8 MODEL TESTING

Some very large hydraulic machines are tested in a model form before making the
full-sized machine. After the result is obtained from the model, one may
transpose the results from the model to the full-sized machine. Therefore if the
curves shown in Fig 1.7 have been obtained for a completely similar model, these
same curves would apply to the full-sized prototype machine.

1.9 GEOMETRIC SIMILARITY

For geometric similarity to exist between the model and prototype, both of them
should be identical in shape but differ only in size. Or, in other words, for
geometric similarity between the model and the prototype, the ratios of all the
corresponding linear dimensions should be equal.

Let L, be the length of the prototype, B,, the breadth of the prototype, Dy,
the depth of the prototype, and L,,, By, and Dy, the corresponding dimensions of
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the model. For geometric similarity, linear ratio (or scale ratio) is given by
L B D
[[=—R="P_"FP (1.19)
Ly Bm Dn

Similarly, the area ratio between prototype and model is given by

2 2 2
v ()= ()= 62) a2

and the volume ratio
L\® (B,\° [D,\’
w= ()= )= ()

1.10 KINEMATIC SIMILARITY

For kinematic similarity, both model and prototype have identical motions or
velocities. If the ratio of the corresponding points is equal, then the velocity ratio
of the prototype to the model is
Vi

Vi V2

V, (1.22)

where V is the velocity of liquid in the prototype at point 1, V,_ the velocity of
liquid in the prototype at point 2, vy, the velocity of liquid in the model at point 1,
and v, is the velocity of liquid in the model at point 2.

1.11 DYNAMIC SIMILARITY

If model and prototype have identical forces acting on them, then dynamic
similarity will exist. Let F; be the forces acting on the prototype at point 1, and F,
be the forces acting on the prototype at point 2. Then the force ratio to establish
dynamic similarity between the prototype and the model is given by

Fpir  Fp

Fo—1tel _ I 1.23
! le Fm2 ( )

1.12 PROTOTYPE AND MODEL EFFICIENCY

Let us suppose that the similarity laws are satisfied, 1, and 7, are the prototype
and model efficiencies, respectively. Now from similarity laws, representing
the model and prototype by subscripts m and p respectively,

H, H,, H, (Np)2 (Dp)2
(NyD,)? (VD) Hy  \Nm/ \Dn
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O _ On O _ (M) (D)
NpD3  NuwDj Om  \Nwm/ \Dn

3 5
Py Pe o Py (No\ (D
N3D3 N3D;, Pn  \Np/) \Dn

Turbine efficiency is given by

Power transferred from fluid P
N = =

Fluid power available.  pgQH

Hence, N _ (P—m> <%> (ﬁ> =1.
Np Pp On Hy

Thus, the efficiencies of the model and prototype are the same providing the
similarity laws are satisfied.

1.13 PROPERTIES INVOLVING THE MASS OR
WEIGHT OF THE FLUID

1.13.1 Specific Weight (y)

The weight per unit volume is defined as specific weight and it is given the
symbol vy (gamma). For the purpose of all calculations relating to hydraulics, fluid
machines, the specific weight of water is taken as 1000 1/m>. In S.I. units, the
specific weight of water is taken as 9.80 kN/m”.

1.13.2 Mass Density (p)

The mass per unit volume is mass density. In S.I. systems, the units are kilograms
per cubic meter or NS*/m*. Mass density, often simply called density, is given the
greek symbol p (rho). The mass density of water at 15.5° is 1000 kg/m”.

1.13.3 Specific Gravity (sp.gr.)

The ratio of the specific weight of a given liquid to the specific weight of water at
a standard reference temperature is defined as specific gravity. The standard
reference temperature for water is often taken as 4°C Because specific gravity is a
ratio of specific weights, it is dimensionless and, of course, independent of system
of units used.

1.13.4 Viscosity (u)

We define viscosity as the property of a fluid, which offers resistance to the
relative motion of fluid molecules. The energy loss due to friction in a flowing
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fluid is due to the viscosity. When a fluid moves, a shearing stress develops in it.
The magnitude of the shearing stress depends on the viscosity of the fluid.
Shearing stress, denoted by the symbol 7 (tau) can be defined as the force required
to slide on unit area layers of a substance over another. Thus 7is a force divided
by an area and can be measured in units N/m? or Pa. In a fluid such as water, oil,
alcohol, or other common liquids, we find that the magnitude of the shearing
stress is directly proportional to the change of velocity between different
positions in the fluid. This fact can be stated mathematically as

= M(%;) (1.24)

where % is the velocity gradient and the constant of proportionality u is called
y oL . .

the dynamic viscosity of fluid.

Units for Dynamic Viscosity

Solving for w gives

N
'LL_AV/Ay_TAv

Substituting the units only into this equation gives

N m NXs

= —X— =
® m?2  m/s m?

Since Pa is a shorter symbol representing N/m”, we can also express u as

m=Pa-s

1.13.5 Kinematic Viscosity (v)

The ratio of the dynamic viscosity to the density of the fluid is called the
kinematic viscosity v (nu). It is defined as
k 3 2
p ms kg S

Any fluid that behaves in accordance with Eq. (1.25) is called a Newtonian fluid.

1.14 COMPRESSIBLE FLOW MACHINES

Compressible fluids are working substances in gas turbines, centrifugal and axial
flow compressors. To include the compressibility of these types of fluids (gases),
some new variables must be added to those already discussed in the case of
hydraulic machines and changes must be made in some of the definitions used.
The important parameters in compressible flow machines are pressure and
temperature.
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Figure 1.8 Compression and expansion in compressible flow machines: (a) compression,
(b) expansion.

In Fig. 1.8 T-s charts for compression and expansion processes are shown.

Isentropic compression and expansion processes are represented by s and
the subscript O refers to stagnation or total conditions. 1 and 2 refer to the inlet
and outlet states of the gas, respectively. The pressure at the outlet, Py, can be
expressed as follows

Poy = f(D,N,m,Por, Tor, Toz, pot, Poz; ) (1.26)

The pressure ratio Py,/Pg; replaces the head H, while the mass flow rate m
(kg/s) replaces Q. Using the perfect gas equation, density may be written as
p = P/IRT. Now, deleting density and combining R with 7, the functional
relationship can be written as

Poy = f(Po1,RTo1,RToz,m,N,D, ) (1.27)

Substituting the basic dimensions and equating the indices, the following
fundamental relationship may be obtained

m 12
@:f (RT02>7 (m) 7( ND >7Re (1.28)

Po; RTo; Py D? (RTo1)'"

In Eq. (1.28), R is constant and may be eliminated. The Reynolds number in
most cases is very high and the flow is turbulent and therefore changes in this
parameter over the usual operating range may be neglected. However, due to
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Figure 1.9 Axial flow compressor characteristics: (a) pressure ratio, (b) efficiency.

large changes of density, a significant reduction in Re can occur which must be
taken into consideration. For a constant diameter machine, the diameter D may be
ignored, and hence Eq. (1.28) becomes

Py, T\ (mT? N
_ , (= 1.29
Po f((Tm) <P01 Tt (129

In Eq. (1.29) some of the terms are new and no longer dimensionless. For a
particular machine, it is typical to plot Pyy/Py; and T/To; against the mass flow

. ! 09 |
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Figure 1.10 Axial flow gas turbine characteristics: (a) pressure ratio, (b) efficiency.
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rate parameter mT ?/Py; for different values of the speed parameter N/T}/?.

Equation (1.28) must be used if it is required to change the size of the machine. The
term ND/(RTo;)"? indicates the Mach number effect. This occurs because the
impeller velocity v oc ND and the acoustic velocity ag; o< RT, while the Mach
number

M = Viay, (1.30)

The performance curves for an axial flow compressor and turbine are
shown in Figs. 1.9 and 1.10.

1.15 BASIC THERMODYNAMICS, FLUID
MECHANICS, AND DEFINITIONS OF
EFFICIENCY

In this section, the basic physical laws of fluid mechanics and thermodynamics
will be discussed. These laws are:

1. The continuity equation.

2. The First Law of Thermodynamics.

3. Newton’s Second Law of Motion.

4. The Second Law of Thermodynamics.

The above items are comprehensively dealt with in books on thermo-
dynamics with engineering applications, so that much of the elementary
discussion and analysis of these laws need not be repeated here.

1.16 CONTINUITY EQUATION

For steady flow through a turbomachine, m remains constant. If A and A, are the
flow areas at Secs. 1 and 2 along a passage respectively, then

m = p1A;C; = ppA,C, = constant (1.31)
where py, is the density at section 1, p,_the density at section 2, Cy, the velocity at

section 1, and C», is the velocity at section 2.

1.17 THE FIRST LAW OF THERMODYNAMICS

According to the First Law of Thermodynamics, if a system is taken through a
complete cycle during which heat is supplied and work is done, then

f(BQ —3W)=0 (1.32)

where § 80 represents the heat supplied to the system during this cycle and §3W
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the work done by the system during the cycle. The units of heat and work are
taken to be the same. During a change of state from 1 to 2, there is a change in
the internal energy of the system

2
U,—-U, = / (B0 — dW) (1.33)
1

For an infinitesimal change of state

dU = 80 — W (1.34)

1.17.1 The Steady Flow Energy Equation

The First Law of Thermodynamics can be applied to a system to find the change
in the energy of the system when it undergoes a change of state. The total energy
of a system, £ may be written as:

E = Internal Energy + Kinetic Energy + Potential Energy
E=U+KE +PE. (1.35)

where U is the internal energy. Since the terms comprising E are point functions,
we can write Eq. (1.35) in the following form

dE = dU + d(K.E.) + d(P.E.) (1.36)

The First Law of Thermodynamics for a change of state of a system may
therefore be written as follows

80 = dU + d(KE) + d(PE) 4+ dW (1.37)

Let subscript 1 represents the system in its initial state and 2 represents the system
in its final state, the energy equation at the inlet and outlet of any device may be
written

m(C3 — C})
2
Equation (1.38) indicates that there are differences between, or changes in,
similar forms of energy entering or leaving the unit. In many applications,
these differences are insignificant and can be ignored. Most closed systems
encountered in practice are stationary; i.e. they do not involve any changes in
their velocity or the elevation of their centers of gravity during a process.
Thus, for stationary closed systems, the changes in kinetic and potential
energies are negligible (i.e. A(K.E.) = A(P.E.) = 0), and the first law relation

O12=U, - U + +mg(Zy, —Z1)+ Wi (1.38)
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reduces to
0—-W=AE (1.39)

If the initial and final states are specified the internal energies 1 and 2 can easily
be determined from property tables or some thermodynamic relations.

1.17.2 Other Forms of the First Law Relation

The first law can be written in various forms. For example, the first law relation
on a unit-mass basis is

qg —w = Ae(kJ/kg) (1.40)
Dividing Eq. (1.39) by the time interval At and taking the limit as At — 0 yields
the rate form of the first law

. . dE

W= 1.41

0 i (1.41)
where Q is the rate of net heat transfer, W the power, and ‘fj—f is the rate of change
of total energy. Equations. (1.40) and (1.41) can be expressed in differential form

80 — dW = dE(KJ) (1.42)
dq — dw = de(kJ/kg) (1.43)
For a cyclic process, the initial and final states are identical; therefore,
AE=E, — E,.
Then the first law relation for a cycle simplifies to
Q0 — W=0®KJ) (1.44)

That is, the net heat transfer and the net work done during a cycle must be equal.
Defining the stagnation enthalpy by: hy = h + %cz and assuming g (Z, — Z;) is

negligible, the steady flow energy equation becomes
Q — W = m(hoy = hoy) (1.45)

Most turbomachinery flow processes are adiabatic, and so Q = 0. For work
producing machines, W > 0; so that

W = m(ho1 — hoo) (1.46)
For work absorbing machines (compressors) W < 0; so that
W — —W = i(hy, — hor) (1.47)

1.18 NEWTON’S SECOND LAW OF MOTION

Newton’s Second Law states that the sum of all the forces acting on a control
volume in a particular direction is equal to the rate of change of momentum of the
fluid across the control volume. For a control volume with fluid entering with
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uniform velocity C, and leaving with uniform velocity C,, then

ZF =m(Cy — C)) (1.48)

Equation (1.48) is the one-dimensional form of the steady flow momentum
equation, and applies for linear momentum. However, turbomachines have
impellers that rotate, and the power output is expressed as the product of torque and
angular velocity. Therefore, angular momentum is the most descriptive parameter
for this system.

1.19 THE SECOND LAW OF
THERMODYNAMICS: ENTROPY

This law states that for a fluid passing through a cycle involving heat exchanges
50

— =0 1.49

f . (1.49)

where 80 is an element of heat transferred to the system at an absolute temperature
T. If all the processes in the cycle are reversible, so that 3Q = 8Qg, then

)
f{ O _ (1.50)
T
The property called entropy, for a finite change of state, is then given by
2
3
S~ 8 :/ X (1.51)

1

For an incremental change of state

)
ds = mds = O (1.52)
T
where m is the mass of the fluid. For steady flow through a control volume in

which the fluid experiences a change of state from inlet 1 to outlet 2,

5o
)
/ 50 _ sy — s1) (1.53)
T
1
For adiabatic process, 8Q = 0 so that
55 =85 (1.54)

For reversible process

§2 = 8 (155)
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In the absence of motion, gravity and other effects, the first law of
thermodynamics, Eq. (1.34) becomes

Tds = du + pdv (1.56)
Putting h = u + pvand dh = du + pdv + vdp in Eq. (1.56) gives
Tds = dh — vdp (1.57)

1.20 EFFICIENCY AND LOSSES

Let H be the head parameter (m), Q discharge (m3/s)
The waterpower supplied to the machine is given by

P = pQgH (in watts) (1.58)
and letting p = 1000 kg/m?,

= QgH(in kW)

Now, let AQ be the amount of water leaking from the tail race. This is the amount
of water, which is not providing useful work.
Then:

Power wasted = AQ(gH)(kKW)

For volumetric efficiency, we have

0-AQ
v = (1.59)
Ko
Net power supplied to turbine
= (Q — AQ)gH (kW) (1.60)
If H, is the runner head, then the hydraulic power generated by the runner is
given by
Py = (Q — AQ)gH (kW) (1.61)
The hydraulic efficiency, m, is given by
Hydraulic output —AQ)gH, H
_— ydraulic output power _ o O)gH:, H, (1.62)

(Q—AQgH H

 Hydraulic input power
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If P, represents the power loss due to mechanical friction at the bearing, then the
available shaft power is given by

Py=Py, — Py (1.63)
Mechanical efficiency is given by

Py Py

S U i N 1.64
™ T P — Py (1.64

The combined effect of all these losses may be expressed in the form of overall
efficiency. Thus
P S P, h

0 =p = M™wp

_ WP(Q-AQ)
= an = MmN (1.65)

1.21 STEAM AND GAS TURBINES

Figure 1.11 shows an enthalpy—entropy or Mollier diagram. The process is
represented by line 1-2 and shows the expansion from pressure P; to a lower
pressure P,. The line 1-2s represents isentropic expansion. The actual

o2 o |

b :
22 L 02s A2
Cis?/2 2 I
1
e
= = D
1 / P
023
C_‘sz I ! 5‘701_ /
- CE/2 /,--“"
25!
[ ] Y 1
| | |
I | l
| | |
5 5:
$ s
{a) Turbinc cxpansion process {h) Compression process

Figure 1.11 Enthalpy—entropy diagrams for turbines and compressors: (a) turbine
expansion process, (b) compression process.
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turbine-specific work is given by
1
ﬁm=hm—hw=0u—hﬁ+§«ﬁ—09 (1.66)

Similarly, the isentropic turbine rotor specific work between the same two
pressures is

1
W = ho1 — hoas = (hy — hyg) + 3 (ct - C3) (1.67)

Efficiency can be expressed in several ways. The choice of definitions depends
largely upon whether the kinetic energy at the exit is usefully utilized or wasted.
In multistage gas turbines, the kinetic energy leaving one stage is utilized in
the next stage. Similarly, in turbojet engines, the energy in the gas exhausting
through the nozzle is used for propulsion. For the above two cases, the turbine
isentropic efficiency 7, is defined as

We  hot — hop

M= = (1.68)

Wt hor — hoos
When the exhaust kinetic energy is not totally used but not totally wasted either,
the total-to-static efficiency, 7, is used. In this case, the ideal or isentropic
turbine work is that obtained between static points 01 and 2s. Thus

ho1 — hoz hor — hoz

= = (1.69)
e hot = hoos +3C5; hor — hag

If the difference between inlet and outlet kinetic energies is small, Eq. (1.69)

becomes
_ h — hy
T~ e + 1

An example where the outlet kinetic energy is wasted is a turbine exhausting
directly to the atmosphere rather than exiting through a diffuser.

1.22 EFFICIENCY OF COMPRESSORS

The isentropic efficiency of the compressor is defined as

__Isentropic work Aoy — ho)

= 1.70
¢ Actual work hop — hoy ( )
If the difference between inlet and outlet kinetic energies is small, %C% = %C%
and
has —
. = 1.71
e = (L.71)
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1.23 POLYTROPIC OR SMALL-STAGE EFFICIENCY

Isentropic efficiency as described above can be misleading if used for compression
and expansion processes in several stages. Turbomachines may be used in large
numbers of very small stages irrespective of the actual number of stages in the
machine. If each small stage has the same efficiency, then the isentropic efficiency
of the whole machine will be different from the small stage efficiency, and this
difference is dependent upon the pressure ratio of the machine.

Isentropic efficiency of compressors tends to decrease and isentropic
efficiency of turbines tends to increase as the pressure ratios for which
the machines are designed are increased. This is made more apparent in the
following argument.

Consider an axial flow compressor, which is made up of several stages,
each stage having equal values of 7, as shown in Fig. 1.12.

Then the overall temperature rise can be expressed by

AT = ZAT; = %ZATJ

Ms

\
\ \

AT' ,j—T// /A 4

ATs'

8

Figure 1.12 Compression process in stages.
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(Prime symbol is used for isentropic temperature rise, and subscript s is for
stage temperature).

Also, AT = A"/, by definition of 1., and thus: /1. = S_ATJ//AT'. It is
clear from Fig. 1.12 that > AT’ > AT'. Hence, 7. < 7, and the difference will
increase with increasing pressure ratio. The opposite effect is obtained in a
turbine where 7 (i.e., small stage efficiency) is less than the overall efficiency of
the turbine.

The above discussions have led to the concept of polytropic efficiency, 1,
which is defined as the isentropic efficiency of an elemental stage in the process
such that it is constant throughout the entire process.

The relationship between a polytropic efficiency, which is constant through
the compressor, and the overall efficiency 7. may be obtained for a gas of
constant specific heat.

For compression,

!
. = —— = constant
Moo =4

But, ﬁ = constant for an isentropic process, which in differential form is
dr’ _y—1dpP
dr  y P

Now, substituting d7” from the previous equation, we have

dr’ y—1dP

nwcﬁ: y P

Integrating the above equation between the inlet 1 and outlet 2, we get

y—1
In(P,/Py) +
o = T 1.72
K In(To/T)) (1.72)
Equation (1.72) can also be written in the form
y—1
T P, 7
2o (22 (1.73)
T, P,
The relation between 7o and 7, is given by
-1
T,/Ty) — 1 P,/Py)y — 1
_ (I5/Ty) _ (P2/Py) (1.74)

¢ TITH -1 (P,/P o — 1

From Eq. (1.74), if we write ;%1 as ”,;11, Eq. (1.73) is the functional relation
between P and T for a polytropic process, and thus it is clear that the non

isentropic process is polytropic.
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Similarly, for an isentropic expansion and polytropic expansion, the
following relations can be developed between the inlet 1 and outlet 2:

Moot (y—1)
T, (P v
T, \P;
and
Moot (y—1)
- (”# (1.75)

= Ca)
1 Y
1= (PI/PZ)
where 7., is the small-stage or polytropic efficiency for the turbine.

Figure 1.13 shows the overall efficiency related to the polytropic efficiency

for a constant value of y = 1.4, for varying polytropic efficiencies and for

varying pressure ratios.
As mentioned earlier, the isentropic efficiency for an expansion process

exceeds the small-stage efficiency. Overall isentropic efficiencies have been

0%
Tlucc =09

=
)

Nee-038

Tlu:C =0.7

Overall efficiency, n:
o
-l

=
=N

4 5 6 7 3 9
Pressure ratio

Figure 1.13 Relationships among overall efficiency, polytropic efficiency, and

pressure ratio.
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Figure 1.14 Turbine isentropic efficiency against pressure ratio for various polytropic
efficiencies (y = 1.4).

calculated for a range of pressure ratios and different polytropic efficiencies.
These relationships are shown in Fig. 1.14.

1.24 NOZZLE EFFICIENCY

The function of the nozzle is to transform the high-pressure temperature
energy (enthalpy) of the gasses at the inlet position into kinetic energy. This is
achieved by decreasing the pressure and temperature of the gasses in the nozzle.

From Fig. 1.15, it is clear that the maximum amount of transformation will
result when we have an isentropic process between the pressures at the entrance
and exit of the nozzle. Such a process is illustrated as the path 1-2s. Now, when
nozzle flow is accompanied by friction, the entropy will increase. As a result, the
path is curved as illustrated by line 1-2. The difference in the enthalpy change
between the actual process and the ideal process is due to friction. This ratio is
known as the nozzle adiabatic efficiency and is called nozzle efficiency (7,) or jet
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S

Figure 1.15 Comparison of ideal and actual nozzle expansion on a T-s or h—s plane.

pipe efficiency (m;). This efficiency is given by:
= Ah _ hot —hoy _ cp(Tor — Too)
TOAM by = he)  cp(Tor — Ton')

(1.76)

1.25 DIFFUSER EFFICIENCY

The diffuser efficiency my is defined in a similar manner to compressor
efficiency (see Fig. 1.16):

Isentropic enthalpy rise

= " A ctual enthalpy rise
h2s - hl
= (1.77)
hy — hy

The purpose of diffusion or deceleration is to convert the maximum possible
kinetic energy into pressure energy. The diffusion is difficult to achieve
and is rightly regarded as one of the main problems of turbomachinery design.
This problem is due to the growth of boundary layers and the separation of the
fluid molecules from the diverging part of the diffuser. If the rate of diffusion is
too rapid, large losses in stagnation pressure are inevitable. On the other hand, if
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Figure 1.16 Mollier diagram for the diffusion process.

the rate of diffusion is very low, the fluid is exposed to an excessive length of wall
and friction losses become predominant. To minimize these two effects, there
must be an optimum rate of diffusion.

1.26 ENERGY TRANSFER IN TURBOMACHINERY

This section deals with the kinematics and dynamics of turbomachines by means
of definitions, diagrams, and dimensionless parameters. The kinematics and
dynamic factors depend on the velocities of fluid flow in the machine as well as
the rotor velocity itself and the forces of interaction due to velocity changes.

1.27 THE EULER TURBINE EQUATION

The fluid flows through the turbomachine rotor are assumed to be steady over a
long period of time. Turbulence and other losses may then be neglected, and the
mass flow rate m is constant. As shown in Fig. 1.17, let w (omega) be the angular
velocity about the axis A—A.

Fluid enters the rotor at point 1 and leaves at point 2.

In turbomachine flow analysis, the most important variable is the fluid
velocity and its variation in the different coordinate directions. In the designing of
blade shapes, velocity vector diagrams are very useful. The flow in and across
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Figure 1.17 Velocity components for a generalized rotor.

the stators, the absolute velocities are of interest (i.e., C). The flow velocities across
the rotor relative to the rotating blade must be considered. The fluid enters with
velocity Cy, which is at a radial distance r; from the axis A—A. At point 2 the fluid
leaves with absolute velocity (that velocity relative to an outside observer). The
point 2 is at a radial distance r, from the axis A—A. The rotating disc may be either
aturbine or acompressor. Itis necessary to restrict the flow to a steady flow, i.e., the
mass flow rate is constant (no accumulation of fluid in the rotor). The velocity C; at
the inlet to the rotor can be resolved into three components; viz.;

C,1 — Axial velocity in a direction parallel to the axis of the rotating shaft.

C;; — Radial velocity in the direction normal to the axis of the rotating

shaft.

C,,1 — whirl or tangential velocity in the direction normal to a radius.

Similarly, exit velocity C, can be resolved into three components; that is,
Ca, Ci, and Cy,. The change in magnitude of the axial velocity components
through the rotor gives rise to an axial force, which must be taken by a thrust
bearing to the stationary rotor casing. The change in magnitude of the radial
velocity components produces radial force. Neither has any effect on the angular
motion of the rotor. The whirl or tangential components C,, produce the
rotational effect. This may be expressed in general as follows:

The unit mass of fluid entering at section 1 and leaving in any unit of time
produces:

The angular momentum at the inlet: Cyrq

The angular momentum at the outlet: Cyorp

And therefore the rate of change of angular momentum = Cy, 7| — Cyr»
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By Newton’s laws of motion, this is equal to the summation of all the
applied forces on the rotor; i.e., the net torque of the rotor 7 (tau). Under steady
flow conditions, using mass flow rate m, the torque exerted by or acting on the
rotor will be:

T=m(Cy1r1 — Cy2r2)

Therefore the rate of energy transfer, W, is the product of the torque and the
angular velocity of the rotor @ (omega), so:

W = 170 = ma(Cy171 — Cyar2)
For unit mass flow, energy will be given by:
W = w(Cy1r1 — Cyp1r2) = (Cy 111w — Cyphro)
But, wry =U; and w r, = U,
Hence, W = (Cy1U; — Cy2U»), (1.78)

where, W is the energy transferred per unit mass, and U; and U, are the rotor
speeds at the inlet and the exit respectively. Equation (1.78) is referred to as
Euler’s turbine equation. The standard thermodynamic sign convention is that
work done by a fluid is positive, and work done on a fluid is negative. This means
the work produced by the turbine is positive and the work absorbed by the
compressors and pumps is negative. Therefore, the energy transfer equations can
be written separately as

W = (Cy1U; — CyoU,) for turbine
and

W = (CyoU, — Cy,1 Uy) for compressor and pump.

The Euler turbine equation is very useful for evaluating the flow of fluids that
have very small viscosities, like water, steam, air, and combustion products.

To calculate torque from the Euler turbine equation, it is necessary to
know the velocity components Cy, Cy», and the rotor speeds U; and U, or
the velocities Vi, V5, C;j, Crp as well as U; and U,. These quantities can be
determined easily by drawing the velocity triangles at the rotor inlet and outlet,
as shown in Fig. 1.18. The velocity triangles are key to the analysis of turbo-
machinery problems, and are usually combined into one diagram. These triangles
are usually drawn as a vector triangle:

Since these are vector triangles, the two velocities U and V are relative to
one another, so that the tail of V is at the head of U. Thus the vector sum of U and
V is equal to the vector C. The flow through a turbomachine rotor, the absolute
velocities C; and C, as well as the relative velocities V; and V, can have three
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Figure 1.18 Velocity triangles for a rotor.

components as mentioned earlier. However, the two velocity components,
one tangential to the rotor (Cy) and another perpendicular to it are sufficient.
The component C: is called the meridional component, which passes through the
point under consideration and the turbomachine axis. The velocity components
C;; and C,, are the flow velocity components, which may be axial or radial
depending on the type of machine.

1.28 COMPONENTS OF ENERGY TRANSFER

The Euler equation is useful because it can be transformed into other forms,
which are not only convenient to certain aspects of design, but also useful in
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understanding the basic physical principles of energy transfer. Consider the
fluid velocities at the inlet and outlet of the turbomachine, again designated
by the subscripts 1 and 2, respectively. By simple geometry,

2 _ 2 2
Co=0C~Cy
and
Ch=Vi— (U2~ C)’
Equating the values of C% and expanding,
C; = Coy = V35— U3 4+2U,Cp — C3,
and
1
UsCuo =5 (G + U3 = V)

Similarly,
1
UiCyi = E(C% +U2-V)
Inserting these values in the Euler equation,
1
E=3[(Cl =)+ WU - U+ (V] = V3)] (1.79)

The first term, %(C% — C3), represents the energy transfer due to change of
absolute kinetic energy of the fluid during its passage between the entrance and
exit sections. In a pump or compressor, the discharge kinetic energy from the
rotor, %C%, may be considerable. Normally, it is static head or pressure that is
required as useful energy. Usually the kinetic energy at the rotor outlet is
converted into a static pressure head by passing the fluid through a diffuser. In a
turbine, the change in absolute kinetic energy represents the power transmitted
from the fluid to the rotor due to an impulse effect. As this absolute kinetic energy
change can be used to accomplish rise in pressure, it can be called a “virtual
pressure rise” or “a pressure rise” which is possible to attain. The amount of
pressure rise in the diffuser depends, of course, on the efficiency of the diffuser.
Since this pressure rise comes from the diffuser, which is external to the rotor,
this term, i.e., %(Cf — C%), is sometimes called an “external effect.”

The other two terms of Eq. (1.79) are factors that produce pressure rise
within the rotor itself, and hence they are called “internal diffusion.” The
centrifugal effect, %(U % -U %), is due to the centrifugal forces that are developed
as the fluid particles move outwards towards the rim of the machine. This effect
is produced if the fluid changes radius as it flows from the entrance to the exit
section. The third term, %(V% - V%), represents the energy transfer due to the
change of the relative kinetic energy of the fluid. If V, > V|, the passage acts like a
nozzle and if V, < Vi, it acts like a diffuser. From the above discussions, it is
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apparent that in a turbocompresser, pressure rise occurs due to both external effects
and internal diffusion effect. However, in axial flow compressors, the centrifugal
effects are not utilized at all. This is why the pressure rise per stage is less than in a
machine that utilizes all the kinetic energy effects available. It should be noted that
the turbine derives power from the same effects.

Hlustrative Example 1.1: A radial flow hydraulic turbine produces 32 kW
under a head of 16 m and running at 100 rpm. A geometrically similar model producing
42 kW and a head of 6 m is to be tested under geometrically similar conditions. If model
efficiency is assumed to be 92%, find the diameter ratio between the model and
prototype, the volume flow rate through the model, and speed of the model.

Solution:
Assuming constant fluid density, equating head, flow, and power
coefficients, using subscripts 1 for the prototype and 2 for the model, we
have from Eq. (1.19),

P, P,

(pNiD3) ~ (paNiD3)” WP T

3 i 3 H i
Then, ) = P\ (M or ) = 0.032)% (N, =0.238 N
D] P] N2 D[ 42 N2 N2

Also, we know from Eq. (1.19) that
gHi gt
(N1D1)*  (N2Dy)

D, (Hy\*(N\\ _ [6\!(N,
D, \H,) \wv,) \16) \wv,
Equating the diameter ratios, we get

3 1
N1\’ 6\2/N;
238 () = () (2
0 38(1\’2) (16) <N2)

2
N2\ 0612
2 =2 _157
<N1) 0.238

5 (gravity remains constant)

Then

or

Therefore the model speed is

N, = 100 X (2.57)) = 1059 rpm
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Model scale ratio is given by

3
D, 100\ } 06
D, (0.238) <1059) 0.238(0.094) 0.058

Power output

Model effici i =
odel CHICIENEY IS T Water power input

or,
42%10°
0.92 = 0 ,
pgQH
or,
42x 103
[0) =0.776 m*/s

T092x10°x9.81 X6

Tlustrative Example 1.2: A centrifugal pump delivers 2.5 m?/s under a
head of 14 m and running at a speed of 2010 rpm. The impeller diameter of the
pump is 125 mm. If a 104 mm diameter impeller is fitted and the pump runs at a
speed of 2210 rpm, what is the volume rate? Determine also the new pump head.

Solution:
First of all, let us assume that dynamic similarity exists between the two
pumps. Equating the flow coefficients, we get [Eq. (1.3)]

Or _ O or 25 _ %
N\D} N»Dj3 2010 % (0.125)% 2210 X (0.104)

Solving the above equation, the volume flow rate of the second pump is

~2.5%2210%(0.104)

=1.58 m%/s
2010 % (0.125)3

2

Now, equating head coefficients for both cases gives [Eq. (1.9)]
gHINID? = gH»/N3D>
Substituting the given values,

9.81x14  981XH,
(2010 X 125)2 (2210 X 104)?

Therefore, H, = 11.72 m of water.
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Mlustrative Example 1.3: An axial flow compressor handling air and designed
to run at 5000 rpm at ambient temperature and pressure of 18°C and 1.013 bar,
respectively. The performance characteristic of the compressor is obtained at the
atmosphere temperature of 25°C. What is the correct speed at which the compressor
must run? If an entry pressure of 65 kPa is obtained at the point where the mass flow
rate would be 64 kg/s, calculate the expected mass flow rate obtained in the test.

Solution:

Since the machine is the same in both cases, the gas constant R and
diameter can be cancelled from the operating equations. Using first the
speed parameter,

N1 N
VTor Tz
Therefore,
N, = 5000 273 +25)¢ 5000 298) %2 5060
= _— = —_— = Ipm
2 273+ 18 291 P
Hence, the correct speed is 5060 rpm. Now, considering the mass flow
parameter,
mivTor _ mavTop
Po1 Po2
Therefore, 05
65 291\~
=64 X [— | [ =— = 40.58 kg/
" (101.3) (298) .

Illustrative Example 1.4: A pump discharges liquid at the rate of Q
against a head of H. If specific weight of the liquid is w, find the expression for the
pumping power.

Solution:
Let Power P be given by:

P=f(w,Q H)=kw'Q"H*

where k, a, b, and ¢ are constants. Substituting the respective dimensions in
the above equation,

ML?T 3 = k(ML 2T )4L3>T Hb(L)*

Equating corresponding indices, for M, l =aora=1;forL,2 = —2a +
3b+ c;andforT, =3=—2a — borb=1,s0c=1.
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Therefore,
P =kwQH

Ilustrative Example 1.5: Prove that the drag force F on a partially
submerged body is given by:

k g
F=V0pfl-,=
pf(z’vz)

where V is the velocity of the body, / is the linear dimension, p, the fluid density, &
is the rms height of surface roughness, and g is the gravitational acceleration.

Solution:
Let the functional relation be:

F:f(v7l7k7p7g)
Or in the general form:

F=fF,V,lkpg =0

In the above equation, there are only two primary dimensions. Thus, m = 2.
Taking V, [, and p as repeating variables, we get:

I = (V)'(D°(p)°F
MPLOT® = (LT~ H%L)’ (ML )¢ (MLT %)

Equating the powers of M, L, and T on both sides of the equation, for M,
O=c+lorc=—1;forT,0=—a— 2ora= —2;andforL, 0 =a +
b—3c+ lorb=—2.

Therefore,

I, =W 2 *(p) 'F = Vi

Similarly,
I, = (V) (p) (k)
Therefore,
MOLOT? = (LT~ H%(L)* (ML) (L)
forM,0 =forf=0;forT,0 = —dord=0;andforL,0 =d + ¢ — 3f+

lore=—1.
Thus,

= (V0 (k="
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and

Iy = (V)" (p) (o)

MOLOT? = (LT~ H3(L)"(ML3) (LT ?)
Equating the exponents gives, for M, 0 =i ori=0; for T, 0 = —g-2 or
g=—2;forL,0=g+ h—=3i+ lorh=1.

l
Therefore, I3 =V 2'p%% = V_g2

Now the functional relationship may be written as:

F kg
A - )
(v 1ve)

Therefore,

k Ig
F=Vpf(=,=
14 pf(l,v2>

Ilustrative Example 1.6: Consider an axial flow pump, which has rotor
diameter of 32 cm that discharges liquid water at the rate of 2.5 m>/min while
running at 1450 rpm. The corresponding energy input is 120J/kg, and the total
efficiency is 78%. If a second geometrically similar pump with diameter of 22 cm
operates at 2900 rpm, what are its (1) flow rate, (2) change in total pressure, and
(3) input power?

Solution:
Using the geometric and dynamic similarity equations,
O _ O
N\D}  N»D}
Therefore,
N>D3  (2.5)(2900)(0.22)
0, = QiNoD; _ 25)@900)022)° ) 363 min

N,\D? (1450)(0.32)?
As the head coefficient is constant,
_ WIN3D3  (120)(2900)*(0.22)

Wy = = = 226.88 J/k
2T OND? (1450)2(0.32)> &

The change in total pressure is:

AP = Wanup = (226.88)(0.78)(1000) N/m?
= (226.88)(0.78)(1000)10 % = 1.77 bar
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Input power is given by

~(1000)(2.363)(0.22688)
) =

= 8.94 kW
60

P=mW

Illustrative Example 1.7:  Consider an axial flow gas turbine in which air
enters at the stagnation temperature of 1050 K. The turbine operates with a total
pressure ratio of 4:1. The rotor turns at 15500 rpm and the overall diameter of the
rotor is 30 cm. If the total-to-total efficiency is 0.85, find the power output per kg
per second of airflow if the rotor diameter is reduced to 20 cm and the rotational
speed is 12,500 rpm. Take y = 1.4.

Solution:
Using the isentropic P-T relation:

p [C))]
] 02 °
T = To (_>
02 Py,

Using total-to-total efficiency,

Tor — Tox = (Tor — Tha) mu = (343.68)(0.85) = 292.13 K

0.286
= (1050) (Z) = 706.32K

and
Wi = cpATo = (1.005)(292.13) = 293.59 klJ/kg

Wo — WIN3D3  (293.59 X 10°)(12,500)%(0.20)
T UND? (15, 500)%(0.30)>

= 84,862 J/kg
Power output = 84.86 kl/kg

Ilustrative Example 1.8: At what velocity should tests be run in a wind
tunnel on a model of an airplane wing of 160 mm chord in order that the Reynolds
number should be the same as that of the prototype of 1000 mm chord moving at
40.5 m/s. Air is under atmospheric pressure in the wind tunnel.

Solution:
Let

Velocity of the model: V,

Length of the model: L; = 160 mm
Length of the prototype: L, = 1000 mm
Velocity of the prototype: V, =40.5 m/s
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According to the given conditions:

(Re)m = (Re),

Vlnjjm = lejfp , Therefore, vy = vp = vair
Hence

Vinlm = VypLy,
or

Vi = L, Vp/Lyy = 40.5 X 1000/160 = 253.13 m/s

Illustrative Example 1.9:  Show that the kinetic energy of a body equals
kmV ? using the method of dimensional analysis.

Solution:
Since the kinetic energy of a body depends on its mass and velocity,
K.E.=f(V, m), or KE. =kV%m?’.
Dimensionally,
FLT® = (LT H)4(FT*L™")
Equating the exponents of F, L, and T, we get:
F: 1=b; L: 1=a—b; T: 0=—a+2b

This gives b =1 and a = 2. So, K.E. = kVZm, where k is a constant.

Ilustrative Example 1.10: Consider a radial inward flow machine, the
radial and tangential velocity components are 340 m/s and 50 m/s, respectively,
and the inlet and the outlet radii are 14 cm and 7 cm, respectively. Find the torque
per unit mass flow rate.

Solution:

Here,
ry=0.14 m
Cy1 = 340 m/s,
r, = 0.07 m
Cyo =50 m/s
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Torque is given by:
T=rCy —1nCy
= (0.14 X 340 — 0.07 X 50)
= (47.6 — 3.5) = 44.1 N-m per kg/s

PROBLEMS

1.1

1.2

1.3

14

1.5

1.6

1.7

1.8

Show that the power developed by a pump is given by
P =kwQH

where k = constant, w = specific weight of liquid, Q = rate of discharge,
and H = head dimension.

Develop an expression for the drag force on a smooth sphere of diameter D
immersed in a liquid (of density p and dynamic viscosity u) moving with
velocity V.

The resisting force F of a supersonic plane in flight is given by:

F=fL,V,p, k)
where L = the length of the aircraft, V = velocity, p = air density, u = air
viscosity, and k = the bulk modulus of air.

Show that the resisting force is a function of Reynolds number and Mach
number.

The torque of a turbine is a function of the rate of flow Q, head H, angular
velocity w, specific weight w of water, and efficiency. Determine the torque
equation.

The efficiency of a fan depends on density p, dynamic viscosity u of the
fluid, angular velocity w, diameter D of the rotor and discharge Q. Express
efficiency in terms of dimensionless parameters.

The specific speed of a Kaplan turbine is 450 when working under a head of
12m at 150rpm. If under this head, 30,000 kW of energy is generated,
estimate how many turbines should be used.

(7 turbines).

By using Buckingham’s IT theorem, show that dimensionless expression
AP is given by:

2
Ap_ V0l
2D
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where AP = pressure drop in a pipe, V= mean velocity of the flow,
[ = length of the pipe, D = diameter of the pipe, w = viscosity of the
fluid, kK = average roughness of the pipe, and p = density of the fluid.

1.9 If Hyis the head loss due to friction (AP/w) and w is the specific weight of
the fluid, show that

_4fVA
= 2gD

(other symbols have their usual meaning).

1.10 Determine the dimensions of the following in M.L.T and F.L.T systems:
(1) mass, (2) dynamic viscosity, and (3) shear stress.

(M,FT°L™",ML™'T™",FTL™>,ML™'T"*,FL ™)
NOTATION

area ratio

sonic velocity

breadth of prototype

velocity of gas, absolute velocity of turbo machinery
diameter of pipe, turbine runner, or pump

depth of the prototype

energy transfer by a rotor or absorbed by the rotor
force

force ratio

local acceleration due to gravity

head

specific enthalpy

stagnation enthalpy

kinetic energy

length

length of prototype

scale ratio

Mach number

mass rate of flow

speed

specific speed

power

Py hydraulic power

P power loss due to mechanical friction at the bearing
P

P

>

FETASTIRAYEOSORS

S~z zIE

s shaft power
.E. potential energy
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p fluid pressure

Do stagnation pressure

Q volume rate of flow, heat transfer
R gas constant

Re Reynolds number

r radius of rotor

s specific entropy

sp.gr specific gravity of fluid

T temperature, time

To stagnation temperature

t time

U rotor speed

Vv relative velocity, mean velocity
w work

V. volume ratio, velocity ratio

W, actual turbine work output

w{! isentropic turbine work output
o' absolute air angle

B relative air angle

0% specific weight, specific heat ratio
n efficiency

MNoce polytropic efficiency of compressor
Noct polytropic efficiency of turbine
Ne compressor efficiency

Na diffuser efficiency

h hydraulic efficiency

un jet pipe or nozzle efficiency

N mechanical efficiency

Mo overall efficiency

MNp prototype efficiency

s isentropic efficiency

N turbine efficiency

s total-to-static efficiency

Mt total-to-total efficiency

My volumetric efficiency

7’ absolute or dynamic viscosity
v kinematic viscosity

II dimensionless parameter

p mass density

T shear stress, torque exerted by or acting on the rotor
1) angular velocity
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SUFFIXES

0 stagnation conditions

1 inlet to rotor

2 outlet from the rotor

3 outlet from the diffuser
a axial

h hub

r radial

t tip

w

whirl or tangential

Copyright 2003 by Marcel Dekker, Inc. All Rights Reserved



	TURBOMACHINERY DESIGN AND THEORY
	CONTENTS
	INTRODUCTION: DIMENSIONAL ANALYSIS—BASIC THERMODYNAMICS AND FLUID MECHANICS
	1.1 INTRODUCTION TO TURBOMACHINERY
	1.2 TYPES OF TURBOMACHINES
	1.3 DIMENSIONAL ANALYSIS
	1.4 DIMENSIONS AND EQUATIONS
	1.5 THE BUCKINGHAM THEOREM
	1.6 HYDRAULIC MACHINES
	1.7 THE REYNOLDS NUMBER
	1.8 MODEL TESTING
	1.9 GEOMETRIC SIMILARITY
	1.10 KINEMATIC SIMILARITY
	1.11 DYNAMIC SIMILARITY
	1.12 PROTOTYPE AND MODEL EFFICIENCY
	1.13 PROPERTIES INVOLVING THE MASS OR WEIGHT OF THE FLUID
	1.13.1 SPECIFIC WEIGHT (Y)
	1.13.2 MASS DENSITY (P)
	1.13.3 SPECI.C GRAVITY (SP.GR.)
	1.13.4 VISCOSITY (U)
	1.13.5 KINEMATIC VISCOSITY (V)

	1.14 COMPRESSIBLE FLOW MACHINES
	1.15 BASIC THERMODYNAMICS, FLUID MECHANICS, AND DEFINITIONS OF EFFICIENCY
	1.16 CONTINUITY EQUATION
	1.17 THE FIRST LAW OF THERMODYNAMICS
	1.17.1 THE STEADY FLOW ENERGY EQUATION
	1.17.2 OTHER FORMS OF THE FIRST LAW RELATION

	1.18 NEWTON’S SECOND LAW OF MOTION
	1.19 THE SECOND LAW OF THERMODYNAMICS: ENTROPY
	1.20 EFFICIENCY AND LOSSES
	1.21 STEAM AND GAS TURBINES
	1.22 EFFICIENCY OF COMPRESSORS
	1.23 POLYTROPIC OR SMALL-STAGE EFFICIENCY
	1.24 NOZZLE EFFICIENCY
	1.25 DIFFUSER EFFICIENCY
	1.26 ENERGY TRANSFER IN TURBOMACHINERY
	1.27 THE EULER TURBINE EQUATION
	1.28 COMPONENTS OF ENERGY TRANSFER
	EXAMPLE
	ILLUSTRATIVE EXAMPLE 1.1:
	ILLUSTRATIVE EXAMPLE 1.2:
	ILLUSTRATIVEEXAMPLE 1.3:
	ILLUSTRATIVE EXAMPLE 1.4:
	ILLUSTRATIVE EXAMPLE 1.5:
	ILLUSTRATIVE EXAMPLE 1.6:
	ILLUSTRATIVE EXAMPLE 1.7:
	ILLUSTRATIVE EXAMPLE 1.8:
	ILLUSTRATIVE EXAMPLE 1.9:
	ILLUSTRATIVE EXAMPLE 1.10:

	PROBLEMS
	NOTATION
	SUFFIXES





